Targeted prostate biopsy using mathematical optimization
使用数学优化进行靶向前列腺活检
基本信息
- 批准号:7222719
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsAmericanAnatomyAtlasesBiopsyCancer DetectionCancer ModelCancerousCause of DeathClassificationClinicalClinical DataComputer SimulationComputersDataDatabasesDetectionDevelopmentDoctor of PhilosophyEngineeringGoalsGoldHistologicHospitalsImageImage AnalysisIndividualKnowledgeLeadLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMapsMeasuresMethodologyMethodsModalityNeedlesNumbersOperating SystemOperative Surgical ProceduresPatientsPerformancePlacementPopulationPositioning AttributeProbabilityPropertyProstateProstate-Specific AntigenProstatectomyProstatic DiseasesProtocols documentationPuncture biopsyRadical ProstatectomyRateResearchRoboticsSamplingShapesSignal TransductionSiteSpatial DistributionSpecimenStagingStaining methodStainsStatistical ModelsSystemTechniquesTechnologyTestingTextureTissuesUltrasonographyUrsidae FamilyWomanbasecomputer centercomputerizeddemographicsdesirediagnosis standardimage warpingimprovedmenstatisticssuccesstool
项目摘要
DESCRIPTION (provided by applicant):
Prostate cancer is the second leading cause of death for American men. However, there is currently no imaging modality that can reliably detect cancer in the majority of cases. Therefore, needle biopsy of the prostate has been widely used as a gold standard for the diagnosis and staging of prostate cancer, when elevated prostate specific antigen (PSA) levels are measured. Following the widespread use of sextant biopsy, several enhanced random systematic biopsy methods have been adopted by different groups in an effort to reduce the significant number of cases remaining undetected at initial biopsy, mainly by using additional needles, albeit with limited success. The need to more thoroughly understand the performance of all these random systematic sampling methods has led to several computer simulation studies that utilize whole-mounted histological stained sections from prostatectomy specimens in order to estimate the performance of different biopsy approaches. However, to date there has been no mathematically rigorous attempt to precisely determine where the needles should be placed in order to maximize probability of cancer detection. The overall goal of this project is to develop and clinically test a computer-based methodology for optimal sampling of the prostate during biopsy, so that the probability of cancer detection is maximal, based on statistics obtained by applying an advanced image analysis methodology to whole-mounted sections of radical prostatectomy specimens. We thus propose to develop and clinically test a targeted prostate biopsy method. By this we mean that the exact spatial locations of biopsy sites will be determined using mathematical optimization methods, rather than approximate biopsy locations being defined in terms of a rough subdivision of the prostate, which is the current practice. Histological sections from 281 diverse specimens will be used to determine the spatial statistics of prostate cancer. A methodology for elastic shape transformation will be developed and used to accurately overlay images from different specimens, by removing inter-individual morphological variability. Optimal biopsy sites will be determined by mathematical optimization, i.e., by finding the needle coordinates that maximize probability of cancer detection, taking into consideration expected errors in needle placement. Deformable registration algorithms will be developed for overlaying the optimal biopsy sites on a patient's MR images. The optimal sampling method will be validated on an independent patient population, under precise intra-operative MR guidance.
描述(由申请人提供):
前列腺癌是美国男性的第二大死因。然而,目前还没有一种成像手段可以在大多数情况下可靠地检测出癌症。因此,当前列腺癌患者的前列腺特异性抗原(PSA)水平升高时,前列腺活检已被广泛用作前列腺癌诊断和分期的金标准。随着六分仪活检术的广泛使用,不同群体采用了几种增强的随机系统活检法,以努力减少初次活检术中仍未发现的大量病例,主要是通过使用额外的针头,尽管收效甚微。为了更彻底地了解所有这些随机系统抽样方法的性能,已经有了几项计算机模拟研究,这些研究利用前列腺切除标本的整体组织学染色切片来评估不同活检方法的性能。然而,到目前为止,还没有严格的数学尝试来精确地确定针头应该放在哪里,以便最大限度地提高癌症检测的可能性。该项目的总体目标是开发和临床测试一种基于计算机的方法,用于在活检过程中对前列腺进行最佳采样,以便根据将先进的图像分析方法应用于前列腺癌根治术标本的整体切片而获得的统计数据,最大限度地检测出癌症。因此,我们建议开发和临床测试一种有针对性的前列腺活检方法。我们的意思是,活检部位的准确空间位置将使用数学优化方法确定,而不是像目前的做法那样,根据前列腺的粗略细分来定义大致的活检位置。来自281个不同标本的组织切片将被用来确定前列腺癌的空间统计。将开发一种用于弹性形状变换的方法,并通过消除个体间的形态差异来准确地覆盖来自不同样本的图像。最佳活检点将通过数学优化来确定,即通过寻找最大限度地提高癌症检测概率的针坐标,并考虑到针放置的预期误差。可变形配准算法将被开发用于将最佳活检位置叠加在患者的MR图像上。在精确的术中MR指导下,最优抽样方法将在独立的患者群体上得到验证。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sampling the spatial patterns of cancer: optimized biopsy procedures for estimating prostate cancer volume and Gleason Score.
- DOI:10.1016/j.media.2009.05.002
- 发表时间:2009-08
- 期刊:
- 影响因子:10.9
- 作者:Ou, Yangming;Shen, Dinggang;Zeng, Jianchao;Sun, Leon;Moul, Judd;Davatzikos, Christos
- 通讯作者:Davatzikos, Christos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant














{{item.name}}会员




