Energy efficiency of flapping flight: understanding and exploitation

扑动飞行的能量效率:理解和利用

基本信息

  • 批准号:
    2889142
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Flapping flight represents the most efficient form of low Reynolds number flight across natural and manmade studies. For example, it allows butterflies to migrate up to 3000 miles between North America and southwestern Mexico annually, largely exploiting unsteady aerodynamic mechanisms via flapping of their wings. Other larger flapping species such as birds and bats, operating in higher Reynolds number regimes, use similar mechanisms to achieve flight during hunting, migration and evasion of predators. However, this remains one of the least understood and exploited natural forms of locomotion, due to the combined complexity of non-linear kinematics and morphology, as well as the difficulty in working with and sufficiently measuring live specimens. This project proposes a novel wind tunnel platform for investigation into flapping flight kinematics, using a 6-axis industrial articulated robotic arm, for repeatable wind tunnel testing of flapping flight across various parameter spaces, and hence species. The wind tunnel facility is the T1 Wind Tunnel at Imperial College London, an ultra-low turbulence facility capable of maximum wind speeds of up to 42 m/s. The high manoeuvrability of this wing-robot-tunnel system enables a deeper understanding of how the specific flapping flight path 'swept out' by the wing tip allows for optimal aerodynamic control of unsteady structures for augmentation of lift beyond typical fixed-wing stall angles of attack. Synchronous 3 component velocity fields and surface pressure measurements will be used to characterise the formation and shedding of unsteady aerodynamic structures, with the aim of correlating global flow field behaviour to the pressure sensed on the surface of the wing. This represents a 'partially observable system', in line with the natural sensing abilities of various species of interest - for example, bats can sense airflow via microscopic hairs on their wing membranes, and the nostrils of large seabirds are used to find gusts to ride during turbulent conditions. The experiment therefore seeks a bioinspired pathway for energy efficient aerodynamic control of a moving wing in a minimally observable flow field.Further investigations into exploitation of these mechanisms propose a novel control approach for actuating the arm-wing system via real-time flow observation, with the wing kinematics controlled using a Reinforcement Learning Neural Network. The observations are to be achieved via surface pressure measurements on the wing and fixed velocity sensors off-wing (or other biomimicking sensor systems as appropriate), with control inputs used to improve the flapping behaviour based on a lift-maximising framework to maximise energy efficiency, for example, to increase the range. An 'optimal flapping flight' path is sought, as determined by power extracted from the wind tunnel flow balanced against energy supplied to perform the procedure from the robot. The overall aim of the project is therefore to develop a programmable approach to investigation of flapping and unsteady flight control, to enable a better understanding of such locomotion in the natural world and hence inform ongoing progress into energy-efficient aerodynamics. This approach also offers good scalability to higher degrees of freedom and a truly novel approach to real-time flow control using artificial intelligence. With these tools, a multi-disciplinary engineering approach to understanding the energy efficiency behind flapping flight is sought, in an original pathway to established UK groups in Biology and Zoological disciplines. The project allows for future application across aerodynamics, robotics and FWMAVs enabling Transition to Zero Pollution.
在自然界和人工研究中,扑翼飞行是最有效的低雷诺数飞行形式。例如,它允许蝴蝶每年在北美和墨西哥西南部之间迁移3000英里,主要是通过拍打翅膀利用不稳定的空气动力学机制。其他较大的拍动物种,如鸟类和蝙蝠,在较高的雷诺数制度下运作,使用类似的机制来实现狩猎,迁移和逃避捕食者的飞行。然而,由于非线性运动学和形态学的综合复杂性,以及使用和充分测量活体标本的困难,这仍然是人们最不了解和利用的自然运动形式之一。该项目提出了一种新的风洞平台,用于研究扑翼飞行运动学,使用6轴工业关节机械臂,可重复的风洞测试扑翼飞行在不同的参数空间,因此物种。风洞设施是伦敦帝国理工学院的T1风洞,这是一个超低湍流设施,最大风速可达42米/秒。这种机翼-机器人-风洞系统的高机动性使人们能够更深入地了解翼尖“扫出”的特定扑动飞行路径如何允许对非定常结构进行最佳空气动力学控制,以增加超过典型固定翼失速迎角的升力。同步的3分量速度场和表面压力测量将被用于验证非定常空气动力结构的形成和脱落,目的是将总体流场特性与机翼表面上感测到的压力相关联。这代表了一个“部分可观察的系统”,符合各种感兴趣物种的自然感知能力-例如,蝙蝠可以通过翅膀膜上的微观毛发感知气流,大型海鸟的鼻孔用于在湍流条件下寻找阵风。因此,实验寻求一个bioinspired路径的能量有效的气动控制的移动翼在最小可观察的流field.Further调查利用这些机制提出了一种新的控制方法,通过实时流动观察,与机翼运动学控制使用强化学习神经网络驱动的臂翼系统。观察将通过机翼上的表面压力测量和翼外的固定速度传感器(或其他适当的仿生传感器系统)来实现,控制输入用于基于升力最大化框架来改善扑翼行为,以最大化能量效率,例如,增加范围。一个“最佳的扑翼飞行”的路径,寻求确定的功率从风洞流平衡的能量供应,以执行从机器人的程序。因此,该项目的总体目标是开发一种可编程的方法来研究扑翼和非定常飞行控制,以便更好地了解自然世界中的这种运动,从而为节能空气动力学的持续进展提供信息。这种方法还提供了更高自由度的良好可扩展性,以及使用人工智能进行实时流量控制的真正新颖的方法。有了这些工具,寻求一种多学科的工程方法来理解扑翼飞行背后的能源效率,在生物学和动物学学科建立英国团体的原始途径。该项目允许未来应用于空气动力学,机器人和FWMAV,实现零污染过渡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

LED芯片老化过程中有源区的缺陷演化机理研究
  • 批准号:
    61504112
  • 批准年份:
    2015
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
p型GaN单晶衬底的HVPE制备及生长物理研究
  • 批准号:
    61574164
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
III-族氮化物LEDs的复杂界面对注入载流子发光效率影响的研究
  • 批准号:
    11174241
  • 批准年份:
    2011
  • 资助金额:
    51.0 万元
  • 项目类别:
    面上项目
大功率InGaN基LED新型外延结构研究
  • 批准号:
    61076119
  • 批准年份:
    2010
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
收缩估计作为模型选择方法的有效性研究
  • 批准号:
    10771006
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
  • 批准号:
    DE240100863
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
  • 批准号:
    DE240100115
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
  • 批准号:
    2401619
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
  • 批准号:
    2311379
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
  • 批准号:
    LP220200906
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
  • 批准号:
    10110221
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals
循环和生物底物的电化学氧化,用于高效生产有机化学品
  • 批准号:
    10111012
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
  • 批准号:
    10104748
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Launchpad
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
  • 批准号:
    10104871
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了