New Multifunctional Thermoplastic Polymer Nanocomposites for Structural Power Materials, Towards Green Aviation

用于结构动力材料的新型多功能热塑性聚合物纳米复合材料,迈向绿色航空

基本信息

  • 批准号:
    2889173
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The transport sector is a significant contributor to greenhouse gases, and electrification of these systems would undoubtedly help to decarbonize the atmosphere. This is where we enter the exciting field of 'Structural Power Composites' which act as both structural materials and energy storage devices. The Imperial College London Structural Power Composites group has already made significant progress in the development of structural supercapacitors. These typically utilize an electrolyte that is made by mixing an epoxy with an Ionic Liquid (IL), however, issues at the microstructural level persist whereby carbon fibers are being sheathed by the structural phase of the electrolyte. Improving the structural electrolyte is still one of the biggest challenges associated with the field. This is because materials with high ionic conductivity typically have poor mechanical performance and vice-versa, so it is difficult to obtain a good balance between the two.The primary aim of this research is to extend the work done on structural supercapacitors by incorporating thermoplastics (TPs) into the electrolyte with the ultimate goal being to improve both the mechanical and electrochemical performance of these devices. Other benefits of using TPs include: higher toughness, improved recyclability and higher chemical stability. Some of the questions that the project intends to answer are: What TPs are suitable to be used in structural electrolytes? Can the use of TPs offer benefits such as lighter-weight energy storage devices? Can structural supercapacitors be manufactured at a lower cost and at a larger scale using TPs in the electrolyte? Can we recycle TP-based structural electrolytes? The main strategies that will be employed are: i) blending TPs with ionic liquids or ii) backfilling porous TPs with liquid electrolytes like aqueous electrolytes, ionic liquids, lithium salts solutions. The first stage of the project will be to select suitable high-performance thermoplastics (HPTPs) based on a few criteria such as the 'glass transition temperature', 'melting temperature', and 'price per unit mass'. The objective will be to conduct solubility tests of these TPs in the ionic liquids, initially qualitatively by observing the behavior when mixing the two together and then quantitatively. The KAT polarity scale is essentially a system that depicts solvent properties using polarity, acidity, and basicity and can be used to quantify the solubility of a TP in an ionic liquid. These KAT parameters for HPTPs are not widely available in the literature and so this research project aims to find and publish them for the wider scientific community. After obtaining the KAT parameters for some common HPTPs, systematic work will be done to build, for the first time, bi-phasic phase diagrams for different HPTP/IL systems. These essentially show how different combinations of HPTPs and IL interact with each other. HPTPs are typically processed at high temperatures which could cause complications when blending the HPTP with the IL, due to possible degradation of the latter. It will therefore be important to study the processing window of the shortlisted HPTPs experimentally, to narrow down the search for the optimal structural electrolyte. After finalizing the possible candidates of HPTPs and ILs, the next objective will be to optimize the structure of the HPTP and IL blends such that they are thoroughly mixed and interconnected. The morphologies obtained will be studied by 'Scanning Electron Microscopy' and the full mechanical and electrochemical properties of the structural electrolyte will be investigated. In conclusion, opening the research on structural electrolytes to TPs could potentially revolutionize the field, bringing us one step closer to greener, more sustainable aviation.
交通运输部门是温室气体的重要贡献者,这些系统的电气化无疑将有助于大气脱碳。这就是我们进入令人兴奋的“结构动力复合材料”领域的地方,它既可以作为结构材料,也可以作为储能设备。帝国理工学院伦敦结构功率复合材料小组已经在结构超级电容器的开发方面取得了重大进展。这些通常利用通过将环氧树脂与离子液体(IL)混合而制成的电解质,然而,微观结构水平的问题仍然存在,由此碳纤维被电解质的结构相包覆。改进结构电解质仍然是与该领域相关的最大挑战之一。这是因为具有高离子电导率的材料通常具有较差的机械性能,反之亦然,因此很难在两者之间获得良好的平衡。本研究的主要目的是通过将热塑性塑料(TP)引入电解质中来扩展结构超级电容器的工作,最终目标是改善这些设备的机械和电化学性能。使用TP的其他好处包括:更高的韧性,更好的可回收性和更高的化学稳定性。该项目打算回答的一些问题是:什么TP适合用于结构电解质?TP的使用能否带来诸如重量更轻的储能设备等好处?在电解质中使用TP可以以更低的成本和更大的规模制造结构超级电容器吗?我们可以回收TP基结构电解质吗?将采用的主要策略是:i)将TP与离子液体共混或ii)多孔TP与液体电解质如水性电解质、离子液体、锂盐溶液共混。该项目的第一阶段将是根据一些标准选择合适的高性能热塑性塑料(HPTP),如“玻璃化转变温度”,“熔融温度”和“单位质量价格”。目的是进行这些TP在离子液体中的溶解度测试,首先通过观察将两者混合在一起时的行为进行定性,然后进行定量。KAT极性标度本质上是一个使用极性、酸度和碱度描述溶剂性质的系统,可用于量化TP在离子液体中的溶解度。这些HPTP的KAT参数在文献中并不广泛,因此本研究项目旨在为更广泛的科学界找到并发布它们。在获得一些常见HPTP的KAT参数后,将进行系统的工作,首次构建不同HPTP/IL体系的双相相图。这些基本上显示了HPTP和IL的不同组合如何相互作用。HPTP通常在高温下加工,这在将HPTP与IL共混时可能由于后者的可能降解而引起并发症。因此,重要的是通过实验研究入围的HPTP的加工窗口,以缩小对最佳结构电解质的搜索。在最终确定HPTP和IL的可能候选物之后,下一个目标将是优化HPTP和IL共混物的结构,使得它们充分混合和互连。将通过“扫描电子显微镜”研究获得的形态,并研究结构电解质的全部机械和电化学性能。总之,向TP开放结构电解质的研究可能会彻底改变该领域,使我们更接近绿色,更可持续的航空。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

相似海外基金

Multifunctional polymers for combined algal inactivation and flocculation
用于组合藻类灭活和絮凝的多功能聚合物
  • 批准号:
    DE240100987
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
ERI: Self-Recognizing Composite Structural Elements (SR-CSEs): Multifunctional, Sustainable and Reliable
ERI:自我识别复合结构元件 (SR-CSE):多功能、可持续且可靠
  • 批准号:
    2347554
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multifunctional High Entropy Carbide and Boride (HECARBO) Ceramic Composites: Compositional Space, Novel Synthesis, and Property Tailoring
多功能高熵碳化物和硼化物 (HECARBO) 陶瓷复合材料:成分空间、新颖合成和性能定制
  • 批准号:
    EP/Y020804/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multifunctional sustainable adsorbents for water treatment assisted with plasma technologies and for health protection from xenobiotics
多功能可持续吸附剂,用于等离子体技术辅助的水处理和外源性健康保护
  • 批准号:
    EP/Y037170/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Cyberinfrastructure for Printable Multifunctional Microstructural Materials
职业:可打印多功能微结构材料的网络基础设施
  • 批准号:
    2339764
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Designing a Multifunctional Nanoculture System for High-throughput in situ Assessment of Microbial Communities
设计用于微生物群落高通量原位评估的多功能纳米培养系统
  • 批准号:
    2409648
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multifunctional nanomedicine prototypes acting as prophylactics and virus-assisted targeted drug delivery vehicle (NANOPROV)
作为预防剂和病毒辅助靶向药物输送载体的多功能纳米药物原型(NANOPROV)
  • 批准号:
    MR/Y50337X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
  • 批准号:
    2335878
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Graphene Alliance for Sustainable Multifunctional Materials to Tackle Environmental Challenges
可持续多功能材料石墨烯联盟应对环境挑战
  • 批准号:
    10090645
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了