Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results

利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果

基本信息

  • 批准号:
    2889834
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Working with SenseAI, the objective of this project is to develop a STEM imaging system based on infinite-dimensional CS that optimises a sampling strategy involving a continuous probe position domain as opposed to the current finite methods where the locations of the probes are a priori fixed while the recovery algorithm maps subsampled data to an analog image with low computational complexity. Such a capability would significantly increase the key metrics of resolution, precision and sensitivity, providing an increased capability for STEM to deliver unique scientific results. As many scientific methods generate images in similar manners, this approach will have a wide impact.STEM imaging consists of a focused electron beam (or probe) scanning over a thin sample, while a range of different scattering signals are simultaneously collected (creating a time resolved hyperspectral dataset). Low-dose and fast STEM imaging is now a reality thanks to the application of Compressive Sensing (CS) to all imaging modes in the microscope. Specifically, in STEM compressive sensing allows the instrument to sub-sample the probe positions at rates dramatically lower than the Shannon-Nyquist sampling rate, provided that the target image has a sparse representation in a dictionary or basis, e.g., Discrete Cosine Transform. However, while this methodology has been shown to work, the existing CS STEM frameworks are based on finite-dimensional CS: they concern the recovery of a discrete (or pixelated) image. The issue limiting the power of these reconstructions to generate scientific insights at the moment is that STEM images are in fact analog (or continuous-space) and the application of finite-dimensional CS can lead to artefacts in the reconstruction that, in some cases, makes it difficult to distinguish the real features. The images may also in some cases not be sparse in a basis but possess an asymptotic sparsity, and therefore, the experimental sampling strategy of probe positions needs be to take account of these two factors.Initial applications of this technology have focused on electron microscopy, where a real time acquisition mode for atomic resolution images/spectroscopy has been developed in which inpainting reconstructions are aided by a critical deep learning step - the microscopes are learning how to take the best images for themselves and then optimising the experimental acquisition. SenseAI is now working with several major instrument manufacturers to broaden these new approaches to instruments using X-rays, ions, neutrons and optics in addition to the existing portfolio of electron microscopes, with the goal of developing self-driving acquisition and analysis capabilities in the near future.
与SenseAI合作,该项目的目标是开发一种基于无限维CS的STEM成像系统,该系统优化了涉及连续探头位置域的采样策略,而不是当前的有限方法,其中探头的位置是先验固定的,而恢复算法将二次采样数据映射到具有低计算复杂度的模拟图像。这种能力将显著提高分辨率,精度和灵敏度的关键指标,为STEM提供更高的能力,以提供独特的科学成果。由于许多科学方法以类似的方式生成图像,这种方法将产生广泛的影响。STEM成像包括聚焦电子束(或探针)扫描薄样品,同时收集一系列不同的散射信号(创建时间分辨的高光谱数据集)。由于将压缩传感(CS)应用于显微镜中的所有成像模式,低剂量和快速STEM成像现已成为现实。具体地,在STEM中,压缩感测允许仪器以显著低于香农-尼奎斯特采样率的速率对探头位置进行子采样,前提是目标图像在字典或基础中具有稀疏表示,例如,离散余弦变换。然而,虽然这种方法已被证明是有效的,但现有的CS STEM框架是基于有限维CS的:它们涉及离散(或像素化)图像的恢复。目前限制这些重建产生科学见解的能力的问题是,STEM图像实际上是模拟的(或连续空间),并且有限维CS的应用可能导致重建中的伪影,在某些情况下,难以区分真实的特征。在某些情况下,图像也可能不是稀疏的,但具有渐近稀疏性,因此,探针位置的实验采样策略需要考虑这两个因素。其中原子分辨率图像的真实的时间采集模式/已经开发了光谱学,其中修复重建由关键的深度学习步骤辅助-显微镜正在学习如何为自己拍摄最佳图像,然后优化实验采集。SenseAI目前正在与几家主要的仪器制造商合作,将这些新方法扩展到使用X射线,离子,中子和光学的仪器,以及现有的电子显微镜产品组合,目标是在不久的将来开发自动驾驶采集和分析能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
  • 批准号:
    RGPIN-2019-06170
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
  • 批准号:
    RGPIN-2019-06170
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
  • 批准号:
    RGPIN-2019-06170
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    1902226
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
  • 批准号:
    RGPIN-2019-06170
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New developments in infinite dimensional stochastic analysis based on constructions of spaces of generalized functionals and applications to quantum information theory
基于广义泛函空间构造的无限维随机分析新进展及其在量子信息论中的应用
  • 批准号:
    19K03592
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Infinite dimensional algebras and quantum field theories and their applications
无限维代数和量子场论分析及其应用
  • 批准号:
    17K05275
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie theory and its applications
无限维李理论及其应用
  • 批准号:
    RGPIN-2014-05851
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了