Towards Explainable AI Algorithms via Fitness Landscape Analysis in Evolutionary Computation
通过进化计算中的适应度景观分析实现可解释的人工智能算法
基本信息
- 批准号:2890959
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There lies a motivation in investigating how well meta-heuristic search methods like Genetic Algorithms perform when used alongside illumination algorithms like MAP-Elites to confidently select the best candidate solutions from the solution space. From these 'best' candidate solutions, the focus is then on how these solutions can be explained using XAI algorithms, and how well XAI algorithms can be represented using Fitness Landscapes. There is research to support the use of EC and MAP-Elites together [1] and suggests that their use can be explored to help better accommodate user preferences. There is also research that supports the use of XAI and landscape analysis, with one study finding that the landscape was neutral overall. A neutral landscape can indicate redundant features exist within model configurations, meaning that the end analysis is not as refined as it could be [3]. Therefore, it is important to ensure that the models only contain the most pertinent features that are needed for the transformation especially when there is a reliance on the outcome of the model.Fitness landscapes are a useful way to keep track of the model fitness generated by XAI algorithms, and XAI methods could also be used in fitness landscapes to reinforce the strength of the EC algorithm and the trust from the end-users. The interplay between these terms opens up a lot of potential to research new areas where this could be applied, for instance this could be implemented in healthcare diagnosis tools, the decision could be supported by a number of factors pertinent to that illness, which can be achieved using an XAI method known as Counterfactual Analysis [2]. The fitness of this model can be shown on a fitness landscape, where this model can be generated across 10 simulated runs. In each run, the number of best candidate solutions (models) could be selected using MAP-Elites. These solutions will have an associated fitness score and can be plotted on a fitness landscape to reinforce how strong the model is across each of the independent simulations, using something like decision trees to determine if the landscape analysis is good or bad. This is just one possible scenario, other scenarios can be modelled and experimented with to discover the potential of integrating these technologies. Currently, there exists a number of XAI tools that try to bridge this gap in understanding for end-users[4]. The interest will be in seeing how well these things work together for a set of different problem domains, where the requirements for each end-user will differ.
研究遗传算法等元启发式搜索方法与 MAP-Elites 等照明算法一起使用时的表现如何,以自信地从解决方案空间中选择最佳候选解决方案是有动机的。从这些“最佳”候选解决方案中,重点是如何使用 XAI 算法解释这些解决方案,以及如何使用健身景观来表示 XAI 算法。有研究支持 EC 和 MAP-Elites 一起使用 [1],并表明可以探索它们的使用以帮助更好地适应用户偏好。还有研究支持使用 XAI 和景观分析,其中一项研究发现景观总体上是中性的。中性景观可以表明模型配置中存在冗余特征,这意味着最终分析没有达到应有的程度[3]。因此,确保模型仅包含转换所需的最相关的特征非常重要,尤其是当依赖模型的结果时。适应度景观是跟踪 XAI 算法生成的模型适应度的有用方法,并且 XAI 方法也可以用于适应度景观中,以增强 EC 算法的强度和最终用户的信任。这些术语之间的相互作用为研究可应用的新领域开辟了很大的潜力,例如,这可以在医疗保健诊断工具中实现,该决策可以得到与该疾病相关的许多因素的支持,这可以使用称为反事实分析的 XAI 方法来实现 [2]。该模型的适应度可以在适应度景观上显示,其中该模型可以通过 10 次模拟运行生成。在每次运行中,可以使用 MAP-Elites 选择最佳候选解决方案(模型)的数量。这些解决方案将具有相关的适应度分数,并且可以绘制在适应度景观上,以加强模型在每个独立模拟中的强度,使用决策树之类的东西来确定景观分析是好是坏。这只是一种可能的场景,可以对其他场景进行建模和实验,以发现集成这些技术的潜力。目前,存在许多 XAI 工具试图弥合最终用户理解上的差距[4]。我们感兴趣的是看看这些东西在一组不同的问题领域中协同工作的效果如何,其中每个最终用户的要求会有所不同。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Extraction and Use of Highly Explainable and Transferable Indicators for AI in Education
高度可解释和可转移的人工智能教育指标的提取和使用
- 批准号:
23K25698 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y03743X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
HarmonicAI: Human-guided collAboRative Multi-Objective design of explaiNable, faIr and privaCy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和保护隐私的人工智能的人类引导协作多目标设计
- 批准号:
EP/Z000041/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Explainable AI (XAI): A Creative Copilot for Interior Designers
可解释的人工智能(XAI):室内设计师的创意副驾驶
- 批准号:
10092978 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
NeuReader: Eye Tracking Enabled Explainable-AI for Empowering Resource Scarce Neurological Healthcare in Pakistan
NeuReader:眼动追踪支持可解释人工智能,为巴基斯坦资源稀缺的神经医疗保健提供支持
- 批准号:
EP/Y002865/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y037367/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
I-Corps: Contextualization of Explainable Artificial Intelligence (AI) for Better Health
I-Corps:可解释人工智能 (AI) 的情境化以改善健康
- 批准号:
2331366 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Establishment of a foundation of the eXplainable AI for sports coaching focusing on repetitious motions
为专注于重复动作的运动教练建立 eXplainable AI 基础
- 批准号:
23K10602 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke
开发可解释的人工智能以实现心房颤动和中风的公平风险分层
- 批准号:
10752585 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




