Improving Detection of Outbreaks Due to Aerosol Attacks

改进对气溶胶攻击造成的疫情爆发的检测

基本信息

  • 批准号:
    7428895
  • 负责人:
  • 金额:
    $ 57.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-30 至 2009-09-29
  • 项目状态:
    已结题

项目摘要

The proposed research addresses the problem of early detection of bioterrorism attacks where bioterrorists ¿elease a biological agent into the atmosphere as an aerosol. Such attacks have the potential to kill tens to hundreds of thousands of individuals. Early detection of a windborne attack enables an early response and the earlier the response, the greater the number of lives saved. Over the past three years, we have developed an algorithm designed specifically to detect outbreaks caused by windborne attacks. The potential advantages of this algorithm include: 1. Earlier detection at a lower false-alarm rate as a result of utilizing weather data and knowledge of the spatial and temporal patterns in case distributions in an outbreak resulting from an aerosol release. 2. Partial characterization of the outbreak at the time of detection as an outdoor, aerosol release of a biological agent. 3. A best estimate of location, quantity, and timing of the release of the biological agent. Once responders are aware of an event, this information is essential for the management of additional surveillance and response. We propose to further develop the algorithm and measure the degree to which we can achieve these benefits. The specific aims of the research are to: 1. Determine the ability of the Bayesian Aerosol Release Detector (BARD) to discriminate between outbreaks caused by windborne transmission of biological agents and outbreaks due to other modes of transmission. 2. Compare the performance of BARD for the detection of simulated windborne outbreaks with the performance of algorithms not specifically designed to detect windborne outbreaks. 3. Determine whether inference with BARD remains computationally tractable after extending in a number of ways its models of windborne outbreaks. 4. Evaluate the extensions made in Specific Aim #3 for improvements in detection performance relative to the baseline versions of BARD used in Specific Aims #1 and #2.
拟议的研究解决了及早发现生物恐怖分子袭击的问题 将生物制剂以气雾剂的形式释放到大气中。这类袭击有可能导致数十至 成千上万的个体。及早检测到风载攻击能够及早做出响应并 反应越早,拯救的生命就越多。 在过去的三年里,我们开发了一种专门设计的算法来检测由 被风吹来的攻击。该算法的潜在优势包括: 1.由于利用了天气数据和对 气雾剂释放引起的暴发病例分布的空间和时间模式。 2.在检测到暴发时,将其部分定性为室外气溶胶释放的一种 生物制剂。 3.对生物制剂释放的地点、数量和时间的最佳估计。曾经的应答者 都知道事件,此信息对于管理额外的监视和 回应。 我们建议进一步开发算法,并衡量我们可以实现这些目标的程度 福利。 研究的具体目的是: 1.确定贝叶斯气溶胶释放探测器(BARD)区分 由风媒传播生物制剂引起的疫情和由其他方式引起的疫情 变速箱。 2.将BARD在检测模拟风媒疫情方面的性能与 不是专门为检测风媒疫情而设计的算法的性能。 3.确定与BARD的推论在扩展一个数字后是否在计算上仍然容易处理 它的风媒疫情模型。 4.评估在特定目标#3中进行的扩展,以提高相对于以下各项的检测性能 在具体目标#1和#2中使用的巴德的基线版本。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rank-based spatial clustering: an algorithm for rapid outbreak detection.
基于排名的空间聚类:一种快速爆发检测的算法。
The Bayesian aerosol release detector: an algorithm for detecting and characterizing outbreaks caused by an atmospheric release of Bacillus anthracis.
贝叶斯气溶胶释放检测器:一种用于检测和表征由炭疽杆菌释放到大气中引起的爆发的算法。
  • DOI:
    10.1002/sim.3093
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Hogan,WilliamR;Cooper,GregoryF;Wallstrom,GarrickL;Wagner,MichaelM;Depinay,Jean-Marc
  • 通讯作者:
    Depinay,Jean-Marc
Measuring the effect of commuting on the performance of the Bayesian Aerosol Release Detector.
测量通勤对贝叶斯气溶胶释放检测器性能的影响。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM R HOGAN其他文献

WILLIAM R HOGAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM R HOGAN', 18)}}的其他基金

Apollo: Increasing Access and Use of Epidemic Models Through the Development and
Apollo:通过开发和应用增加流行病模型的获取和使用
  • 批准号:
    8460851
  • 财政年份:
    2012
  • 资助金额:
    $ 57.92万
  • 项目类别:
Apollo: Increasing Access and Use of Epidemic Models Through the Development and
Apollo:通过开发和应用增加流行病模型的获取和使用
  • 批准号:
    8638033
  • 财政年份:
    2012
  • 资助金额:
    $ 57.92万
  • 项目类别:
Apollo: Increasing Access and Use of Epidemic Models Through the Development and
Apollo:通过开发和应用增加流行病模型的获取和使用
  • 批准号:
    8273693
  • 财政年份:
    2012
  • 资助金额:
    $ 57.92万
  • 项目类别:
Improving Detection of Outbreaks Due to Aerosol Attacks
改进对气溶胶攻击造成的疫情爆发的检测
  • 批准号:
    7098625
  • 财政年份:
    2005
  • 资助金额:
    $ 57.92万
  • 项目类别:
Improving Detection of Outbreaks Due to Aerosol Attacks
改进对气溶胶攻击造成的疫情爆发的检测
  • 批准号:
    7119524
  • 财政年份:
    2005
  • 资助金额:
    $ 57.92万
  • 项目类别:
Detectability of Epidemics from Over-the-Counter Sales
从柜台销售中发现流行病
  • 批准号:
    6888283
  • 财政年份:
    2004
  • 资助金额:
    $ 57.92万
  • 项目类别:
Detectability of Epidemics from Over-the-Counter Sales
从柜台销售中发现流行病
  • 批准号:
    6764905
  • 财政年份:
    2004
  • 资助金额:
    $ 57.92万
  • 项目类别:

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

System development for early detection of infectious disease outbreaks and timely risk assessment
早期发现传染病爆发并及时评估风险的系统开发
  • 批准号:
    23K09755
  • 财政年份:
    2023
  • 资助金额:
    $ 57.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel threat detection methodology to detect HIV outbreaks in Washington
用于检测华盛顿艾滋病毒爆发的新型威胁检测方法
  • 批准号:
    10683347
  • 财政年份:
    2022
  • 资助金额:
    $ 57.92万
  • 项目类别:
Novel threat detection methodology to detect HIV outbreaks in Washington
用于检测华盛顿艾滋病毒爆发的新型威胁检测方法
  • 批准号:
    10547381
  • 财政年份:
    2022
  • 资助金额:
    $ 57.92万
  • 项目类别:
Rapid detection of Methicillin-resistant Staphylococcus aureus outbreaks using a multi-omics approach
使用多组学方法快速检测耐甲氧西林金黄色葡萄球菌爆发
  • 批准号:
    466548
  • 财政年份:
    2021
  • 资助金额:
    $ 57.92万
  • 项目类别:
    Studentship Programs
COVID-19 Variant Network - Detection and quantitation of SARS-CoV-2 in wastewater to conduct surveillance on burden of community infection, identify outbreaks and support public health decision-making on control measures for transmission of COVID-19
COVID-19 变体网络 - 对废水中的 SARS-CoV-2 进行检测和定量,以监测社区感染负担、识别疫情并支持有关 COVID-19 传播控制措施的公共卫生决策
  • 批准号:
    443339
  • 财政年份:
    2021
  • 资助金额:
    $ 57.92万
  • 项目类别:
    Operating Grants
Detection and quantitation of SARS-CoV-2 in wastewater to conduct surveillance on burden of community infection, identify outbreaks and support public health decision-making on control measures for transmission of COVID-19
对废水中的 SARS-CoV-2 进行检测和定量,以监测社区感染负担、识别疫情并支持有关 COVID-19 传播控制措施的公共卫生决策
  • 批准号:
    430343
  • 财政年份:
    2020
  • 资助金额:
    $ 57.92万
  • 项目类别:
    Operating Grants
RAPID: Early Detection of Disease Outbreaks using Self-Organizing Patterns – COVID-19
RAPID:使用自组织模式及早检测疾病爆发 — COVID-19
  • 批准号:
    2028051
  • 财政年份:
    2020
  • 资助金额:
    $ 57.92万
  • 项目类别:
    Standard Grant
EAGER: A Wastewater-Based-Epidemiology System for Early Detection of Viral Outbreaks in Detroit, MI
EAGER:基于废水的流行病学系统,用于早期检测密歇根州底特律的病毒爆发
  • 批准号:
    1752773
  • 财政年份:
    2017
  • 资助金额:
    $ 57.92万
  • 项目类别:
    Standard Grant
ATD: An Integrated Framework of Network Theory, Data Mining and Partial Differential Equation for Early Detection of Epidemic Outbreaks
ATD:网络理论、数据挖掘和偏微分方程的集成框架,用于流行病爆发的早期检测
  • 批准号:
    1737861
  • 财政年份:
    2017
  • 资助金额:
    $ 57.92万
  • 项目类别:
    Continuing Grant
COMPARE:Collaborative Management Platform for detection and Analyses of (Re-) emerging and foodborne outbreaks in Europe
比较:用于检测和分析欧洲(重新)新出现的食源性疫情的协作管理平台
  • 批准号:
    nhmrc : GNT1103694
  • 财政年份:
    2015
  • 资助金额:
    $ 57.92万
  • 项目类别:
    International Collaborations
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了