Machine Learning in Chemistry and Biology
化学和生物学中的机器学习
基本信息
- 批准号:7257023
- 负责人:
- 金额:$ 26.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAlgorithmsAreaBenchmarkingBindingBinding SitesBiologyCategoriesCationsCharacteristicsChemicalsChemistryCovalent InteractionDataDerivation procedureDevelopmentDockingFacility Construction Funding CategoryGoalsLigandsLiteratureMachine LearningMethodologyMethodsModelingMolecularMolecular ConformationNumbersPliabilityProteinsPublishingQuantitative Structure-Activity RelationshipRelative (related person)ResearchResearch PersonnelScoreSourceSpeedStructureSurfaceSystemTechniquesTestingWorkabstractingbaseheuristicsimprovedinsightnovelnovel strategiesphysical modelpredictive modelingprotein structurescaffoldsmall moleculesmall molecule librariesthree dimensional structure
项目摘要
DESCRIPTION (provided by applicant): Machine learning has broad applicability in the fields of chemistry and biology. This research effort is focused on empirical derivation of functions that are useful in the context of predicting aspects of molecular interaction between proteins and ligands. The characteristics of this problem offer unique challenges when approached from the perspective of machine learning, key among them being that the configuration in which molecules interact is not generally known. In the case of small molecule protein interactions, where it is possible to represent molecules as 3D objects, this is manifested in terms of hidden variables in the relative conformation and alignment of protein and ligand. Most machine learning tasks do not embed hidden variables in this fashion, but the problem is not insurmountable. We have implemented a number of methods which demonstrate that the problem of hidden variables is tractable, both methodologically in model induction and scoring function optimization as well as from the perspective of computational complexity in search. In this work, we will develop novel methods and refine existing methods in 3 problem areas: 1) Developing scoring functions for small molecule protein interactions with a known protein structure (the docking problem); 2) Developing quantitative models of small molecule activity against proteins with no known structure (the 3D QSAR problem); and 3) Developing methods for search and optimization that improve both model and scoring function induction and high-throughput application to large libraries of small molecules. The goal is to address the problem of prediction in a quantifiable way, which will allow both practical improvements in applications of the methods, and will also provide insight into the mechanistic aspects of the underlying physical molecular interactions.
All methods and data will be made widely available to both academic and industrial investigators.
描述(由申请人提供):机器学习在化学和生物学领域具有广泛的适用性。这项研究工作的重点是在预测蛋白质和配体之间分子相互作用方面有用的功能的经验推导。从机器学习的角度来看,这个问题的特点提供了独特的挑战,其中的关键是分子相互作用的配置通常是未知的。在小分子蛋白质相互作用的情况下,可以将分子表示为3D对象,这表现在蛋白质和配体的相对构象和排列中的隐藏变量方面。大多数机器学习任务不会以这种方式嵌入隐藏变量,但这个问题并非不可克服。我们已经实现了一些方法,这些方法证明了隐变量问题是可处理的,无论是在模型归纳和评分函数优化的方法上,还是从搜索计算复杂性的角度来看。在这项工作中,我们将在3个问题领域开发新方法并改进现有方法:1)开发与已知蛋白质结构的小分子蛋白质相互作用的评分函数(对接问题);2)建立针对未知结构蛋白的小分子活性定量模型(3D QSAR问题);3)开发搜索和优化方法,以提高模型和评分函数的诱导以及对大型小分子文库的高通量应用。目标是以一种可量化的方式解决预测问题,这将允许方法应用的实际改进,并且还将提供对潜在物理分子相互作用的机制方面的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AJAY N JAIN其他文献
AJAY N JAIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AJAY N JAIN', 18)}}的其他基金
Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
- 批准号:
8436505 - 财政年份:2013
- 资助金额:
$ 26.55万 - 项目类别:
Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
- 批准号:
8598096 - 财政年份:2013
- 资助金额:
$ 26.55万 - 项目类别:
Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
- 批准号:
9904662 - 财政年份:2013
- 资助金额:
$ 26.55万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 26.55万 - 项目类别:
Research Grant