Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
基本信息
- 批准号:9904662
- 负责人:
- 金额:$ 31.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffinityBehaviorBindingBinding ProteinsBinding SitesBiologicalBiological AssayCharacteristicsChargeChemicalsComputer AssistedComputer softwareComputing MethodologiesDataData SetDevelopmentDockingDrug DesignDrug IndustryElectrostaticsFormulationFutureGoalsHydrogen BondingIndustrializationIndustry CollaborationKnowledgeLaboratoriesLigand BindingLigandsMachine LearningMeasurementMethodsModelingModernizationMolecularMolecular ProbesPerformancePharmaceutical ChemistryPharmaceutical PreparationsPhysicsPositioning AttributeProceduresProtein ConformationProteinsResearchSeriesStructural ModelsSurfaceTestingVariantWorkbaseblindcombinatorialdesigndrug discoveryimprovedinterestlead optimizationmachine learning methodmethod developmentnovelnovel strategiesphysical modelpre-clinicalpredictive modelingscaffoldsegregationsmall moleculestatistical and machine learningtargeted treatmenttooltreatment feesvirtual
项目摘要
Project Summary / Abstract
This proposal is entitled “Binding-Site Modeling with Multiple-Instance Machine-Learning.” A number of in-
terrelated computational methods for making predictions about the biological behavior of small molecules have
been the subject of development within the Jain Laboratory for over twenty years. These share a common strat-
egy that considers molecular interactions at their surface interface, where proteins and ligands actually interact.
These methods yield measurements of similarity between small molecules or between protein binding pockets.
They also yield measurements of the complementarity of a small molecule to a protein binding site (the molecular
docking problem). A generalization of these concepts makes possible the construction of a virtual binding site for
quantitative activity prediction purely from data about the biological activities of a set of small molecules.
The goals of the proposed work include further improving the accuracy and breadth of applicability of the
binding site modeling approach. The primary application of the approach is to guide optimization of leads within
medicinal chemistry projects, and to quantify potential off-target effects during pre-clinical drug discovery.
A critical focus of the work will be in data and software dissemination, in order to accelerate the efficient
development of targeted therapies. In addition to methods development, the proposed work will involve broad
application of these state-of-the-art predictive modeling methods. The proposed work will proceed with the col-
laborative input of our pharmaceutical industry colleagues, who have specialized knowledge and data sets that are
vital for cutting-edge work in computer-aided drug design.
The expected results include more efficient lead optimization (fewer compounds to reach desired biological pa-
rameters), truly effective scaffold replacement (to move away from a molecular series with biological limitations),
and improved computational predictions of off-target effects during pre-clinical drug design.
项目总结/摘要
该提案的标题为“多实例机器学习的绑定站点建模”。一些在-
预测小分子生物学行为的相互关联的计算方法,
这是耆那教实验室二十多年来的研究课题。他们有一个共同的战略--
它考虑了分子在表面界面的相互作用,蛋白质和配体实际上在那里相互作用。
这些方法可以测量小分子之间或蛋白质结合口袋之间的相似性。
它们还产生小分子与蛋白质结合位点(分子结合位点)的互补性的测量结果。
对接问题)。这些概念的概括使得构建用于免疫球蛋白的虚拟结合位点成为可能。
纯粹从一组小分子的生物活性数据进行定量活性预测。
拟议工作的目标包括进一步提高
结合位点建模方法。该方法的主要应用是指导内部的引线优化
药物化学项目,并在临床前药物发现过程中量化潜在的脱靶效应。
工作的一个关键重点将是数据和软件传播,以加快效率,
靶向疗法的开发。除了方法开发,拟议的工作将涉及广泛的
这些最先进的预测建模方法的应用。拟议的工作将继续进行,
我们的制药行业同事的实验投入,他们拥有专业知识和数据集,
对于计算机辅助药物设计的前沿工作至关重要。
预期的结果包括更有效的先导物优化(更少的化合物达到所需的生物学参数),
纳米),真正有效的支架替代(远离具有生物学限制的分子系列),
以及在临床前药物设计期间改进脱靶效应的计算预测。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs.
- DOI:10.1007/s10822-017-0015-8
- 发表时间:2017-05
- 期刊:
- 影响因子:3.5
- 作者:Cleves AE;Jain AN
- 通讯作者:Jain AN
Quantitative surface field analysis: learning causal models to predict ligand binding affinity and pose.
- DOI:10.1007/s10822-018-0126-x
- 发表时间:2018-07
- 期刊:
- 影响因子:3.5
- 作者:Cleves AE;Jain AN
- 通讯作者:Jain AN
Extrapolative prediction using physically-based QSAR.
- DOI:10.1007/s10822-016-9896-1
- 发表时间:2016-02
- 期刊:
- 影响因子:3.5
- 作者:Cleves AE;Jain AN
- 通讯作者:Jain AN
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AJAY N JAIN其他文献
AJAY N JAIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AJAY N JAIN', 18)}}的其他基金
Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
- 批准号:
8436505 - 财政年份:2013
- 资助金额:
$ 31.02万 - 项目类别:
Binding-Site Modeling with Multiple-Instance Machine-Learning
使用多实例机器学习的结合位点建模
- 批准号:
8598096 - 财政年份:2013
- 资助金额:
$ 31.02万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 31.02万 - 项目类别:
Research Grant