Data Mining Based Noninvasive Intracranial Pressure Assessment

基于数据挖掘的无创颅内压评估

基本信息

  • 批准号:
    7257579
  • 负责人:
  • 金额:
    $ 16.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-03-01 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Existing intracranial pressure (ICP) assessment techniques are invasive, and for many neurosurgical conditions, require penetration of the skull for placement of the sensor. The risks associated with invasive ICP procedures may obviate ICP assessment in many clinical situations in which ICP information could be of vital diagnostic and/or prognostic importance. The overall goal of this project is to develop and validate an accurate, noninvasive ICP assessment method that is able to estimate ICP based on knowledge from intracranial dynamics, cerebral hemodynamics, signal processing and software engineering. The objectives of this project are to develop and validate a data mining based, noninvasive ICP assessment method. The method is based on an innovative data mining framework that unifies various modules involved in the process of constructing an ICP simulation model. It acquires information from a signal database that contains records of simultaneous arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) from a population of patients. In this study, simultaneous invasive ICP measurement will be used for validation purposes. To accomplish this objective, the following specific aims will be addressed: 1) to implement an adaptive signal segmenation algorithm that will assist the construction of signal database; 2) to implement a nonlinear mapping function for relating a hemodynamic feature vector to a dissimilarity measure of an ICP estimate; 3) to compare and validate the performance of DM NICP with two distinct patient population databases: traumatic brain injury (TBI) and normal pressure hydrocephalus (NPH). If validated, this noninvasive ICP prototype can be integrated, in a cost-effective way, into the workflow of an existing clinical protocol where noninvasive ICP assessment is needed. The integration of a noninvasive ICP module will potentially alter the current treatment and management protocol for patients with various neurosurgical disorders, for whom adequate ICP assessment has probably not been done due to the invasive nature of current ICP measurement techniques.
描述(由申请人提供):现有颅内压(ICP)评估技术是侵入性的,并且对于许多神经外科疾病,需要穿透颅骨以放置传感器。在许多临床情况下,ICP信息可能具有重要的诊断和/或预后意义,与侵入性ICP程序相关的风险可能会影响ICP评估。本项目的总体目标是开发和验证一种准确的、无创的ICP评估方法,该方法能够根据颅内动力学、脑血流动力学、信号处理和软件工程的知识估计ICP。 本项目的目标是开发和验证一种基于数据挖掘的无创ICP评估方法。该方法是基于一个创新的数据挖掘框架,该框架统一了在构建ICP模拟模型的过程中所涉及的各个模块。它从信号数据库中获取信息,该数据库包含来自患者人群的同时动脉血压(ABP)和脑血流速度(CBFV)的记录。在本研究中,将使用同步侵入式ICP测量进行验证。为了实现这一目标,将解决以下具体目标:1)实现自适应信号分割算法,该算法将有助于信号数据库的构建; 2)实现非线性映射函数,用于将血流动力学特征向量与ICP估计值的相异性度量相关联; 3)比较并验证DM NICP与两个不同患者人群数据库的性能:创伤性脑损伤(TBI)和正常压力脑积水(NPH)。 如果得到验证,这种无创ICP原型可以以具有成本效益的方式集成到需要无创ICP评估的现有临床协议的工作流程中。无创ICP模块的集成可能会改变患有各种神经外科疾病的患者的当前治疗和管理方案,由于当前ICP测量技术的侵入性,可能尚未对这些患者进行充分的ICP评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Hu其他文献

Xiao Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao Hu', 18)}}的其他基金

Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
  • 批准号:
    10561108
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10600239
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
  • 批准号:
    10406378
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
  • 批准号:
    10599717
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10219683
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
  • 批准号:
    10251348
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10228768
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    9764511
  • 财政年份:
    2018
  • 资助金额:
    $ 16.9万
  • 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
  • 批准号:
    9268686
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
  • 批准号:
    8943567
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了