Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)

用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)

基本信息

  • 批准号:
    10561108
  • 负责人:
  • 金额:
    $ 70.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-10 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary Atrial fibrillation (AF) is the most common arrhythmia, affecting 33.5 million people globally with a growing prevalence. AF is associated with significant morbidity and mortality, including 20% of all strokes, 33% of hospitalizations related to cardiac arrhythmias, and a two-fold increase in risk of death. To reduce AF-associated risks such as stroke, it is important to be able to diagnose AF early in the AF trajectory when it is asymptomatic and paroxysmal in order to initiate effective stroke prevention interventions including anticoagulation. Unfortunately, it is estimated that 700,000 people in the USA may have previously unknown AF, and newly detected AF at the time of stroke was found among 18% of AF-associated stroke incidents. Plethysmography (PPG) measures pulsatile blood volume changes and is available in up to 71% of consumer wearables. Because of this unmatched availability, PPG-based AF detection is ideally poised to enable low-cost, long-term, and continuous AF monitoring at scale. However, modest performance of PPG-based AF detection when PPG signals do not have perfect signal quality remains a critical impediment to fully realize its potential as an AF-monitoring tool at scale. The proposed study aims to overcome this challenge by pursuing the following aims: 1) design, develop, and validate a novel deep neural network (DNN) architecture that integrate PPG signal quality assessment with AF detection to accurately detect AF even for signals with imperfect signal quality; 2) validate and test further personalization of the proposed DNN using prospective data from post stroke patients to be collected in ambulatory settings; 3) develop and validate interpretable EHR-data driven machine learning approaches to identify patients with elevated risk of AF for whom PPG-based AF monitoring can be most likely beneficial.
项目摘要 房颤(AF)是最常见的心律失常,影响全球3350万人, 越来越普遍。AF与显著的发病率和死亡率相关, 中风,33%的住院治疗与心律失常有关, 死亡为了减少房颤相关的风险,如中风,重要的是能够早期诊断房颤, 无症状和阵发性时的AF轨迹,以启动有效卒中 包括抗凝在内的预防干预措施。不幸的是,据估计有七十万人 在美国,可能有先前未知的AF,并且在卒中时发现新检测到AF 在18%的房颤相关中风事件中。体积描记法(PPG)测量脉动血液 数量会发生变化,并且可用于高达71%的消费者可穿戴设备。因为这个无与伦比的 可用性,基于PPG的AF检测非常适合实现低成本,长期和连续的 大规模房颤监测。然而,当PPG时,基于PPG的AF检测的适度性能 信号不具有完美的信号质量仍然是充分实现其潜力的关键障碍, 一个大规模的房颤监测工具。拟议的研究旨在通过以下方式克服这一挑战: 以下目标:1)设计,开发和验证一种新的深度神经网络(DNN)架构, 将PPG信号质量评估与AF检测相结合,即使对于信号也能准确检测AF 信号质量不完美; 2)使用以下方法验证和测试所提出的DNN的进一步个性化 在门诊环境中收集卒中后患者的前瞻性数据; 3)开发和 验证可解释的EHR数据驱动的机器学习方法,以识别升高的患者 基于PPG的AF监测最有可能受益的AF风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Hu其他文献

Xiao Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao Hu', 18)}}的其他基金

Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10600239
  • 财政年份:
    2020
  • 资助金额:
    $ 70.06万
  • 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
  • 批准号:
    10406378
  • 财政年份:
    2020
  • 资助金额:
    $ 70.06万
  • 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
  • 批准号:
    10599717
  • 财政年份:
    2020
  • 资助金额:
    $ 70.06万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10219683
  • 财政年份:
    2020
  • 资助金额:
    $ 70.06万
  • 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
  • 批准号:
    10251348
  • 财政年份:
    2020
  • 资助金额:
    $ 70.06万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    10228768
  • 财政年份:
    2020
  • 资助金额:
    $ 70.06万
  • 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
  • 批准号:
    9764511
  • 财政年份:
    2018
  • 资助金额:
    $ 70.06万
  • 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
  • 批准号:
    9268686
  • 财政年份:
    2015
  • 资助金额:
    $ 70.06万
  • 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
  • 批准号:
    8943567
  • 财政年份:
    2015
  • 资助金额:
    $ 70.06万
  • 项目类别:
ICP Elevation Alerting Based on a Predictive Model Hosting Platform
基于预测模型托管平台的 ICP 海拔警报
  • 批准号:
    8732711
  • 财政年份:
    2012
  • 资助金额:
    $ 70.06万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
  • 批准号:
    2409620
  • 财政年份:
    2024
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
  • 批准号:
    2403716
  • 财政年份:
    2024
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
  • 批准号:
    23H01718
  • 财政年份:
    2023
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
  • 批准号:
    EP/W019450/1
  • 财政年份:
    2023
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 70.06万
  • 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
  • 批准号:
    10062336
  • 财政年份:
    2023
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
  • 批准号:
    10677869
  • 财政年份:
    2022
  • 资助金额:
    $ 70.06万
  • 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
  • 批准号:
    10746743
  • 财政年份:
    2022
  • 资助金额:
    $ 70.06万
  • 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
  • 批准号:
    10021363
  • 财政年份:
    2022
  • 资助金额:
    $ 70.06万
  • 项目类别:
    Investment Accelerator
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了