Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
基本信息
- 批准号:10251348
- 负责人:
- 金额:$ 58.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptedAlgorithmsAneurysmal Subarachnoid HemorrhagesAngioplastyAppearanceAreaBlood Flow VelocityCerebral IschemiaCerebral perfusion pressureCerebrovascular CirculationCerebrumCharacteristicsChronicClinicalClinical Decision Support SystemsClinical TrialsComplicationDataData AnalysesData ReportingDevelopmentDiagnosisDilatation - actionDistalElectronic Health RecordEnsureEvaluationEventFutureGoalsHydrocephalusIncidenceIndividualInfusion proceduresInjuryInstitutionInterventionIntracranial PressureLearningMachine LearningMapsMedicalModelingMonitorMorphologyNatureNeurologicNeurological statusPatient MonitoringPatient-Focused OutcomesPatientsPatternPattern RecognitionPerformancePharmaceutical PreparationsPhasePhysiologic MonitoringPhysiologicalProceduresProcessProspective StudiesPulse PressureRecurrenceReproducibilityResearchRiskShapesSignal TransductionSourceSymptomsSystemTechniquesTestingTimeTimeLineTrainingTranscranial Doppler UltrasonographyValidationVasodilator Agentsbaseclinical practiceconstrictiondata streamsdiagnostic accuracyefficacy testingelectronic datahemodynamicsimprovedindexingmachine learning algorithmnovelprediction algorithmpredictive modelingpreventprospectiverecurrent neural networkrelating to nervous systemtemporal measurementvector
项目摘要
Project Summary
Delayed cerebral ischemia (DCI) is the most devastating complication after aneurysmal
subarachnoid hemorrhage (aSAH) and has an incidence rate of 30%. Current practice relies on
intermittent assessment of neurological status and daily cerebral blood flow velocity (CBFV) by
Transcranial Doppler ultrasound (TCD) to guide medical management to prevent DCI. Only after
medical management fails, is endovascular treatment (EVT) including intraarterial vasodilator infusion
and/or intracranial angioplasty initiated. This reactive practice does not account for early predictors of
DCI and may miss the optimal EVT window at an early stage of DCI development before symptoms or
severe deviations from normal hemodynamics. The goal of this project is to develop algorithms to
predict DCI and related targets at an early stage in their development. An accurate prediction of DCI
will enable a more proactive strategy to prevent and treat the underlying cause of DCI.
The following three aims will be pursued towards the goal of the project: 1) Develop aSAH-specific
intracranial pressure (ICP) pulse-based cerebral arterial state index; 2) Develop and validate predictive
models of targets related to delayed cerebral ischemia after aSAH; 3) Conduct a prospective institution-
specific adaption and validation of the developed models.
Our DCI predictive algorithms only need data available in current clinical practice hence they can
be readily adopted. If validated, these algorithms will enable clinicians to monitor risk of DCI
continuously and to proactively deliver appropriate treatment. The proposed prospective study of
algorithm implementation and adaptation will well prepare future clinical trials to test the efficacy of
algorithm-informed interventions.
项目摘要
迟发性脑缺血(DCI)是脑梗死后最具破坏性的并发症,
蛛网膜下腔出血(aSAH),发病率为30%。目前的做法依赖于
间歇性评估神经系统状态和每日脑血流速度(CBFV),
经颅多普勒超声(TCD)指导医疗管理,以预防DCI。后才
医疗管理失败,是血管内治疗(EVT),包括动脉内血管扩张剂输注
和/或开始颅内血管成形术。这种反应性的做法并不能解释早期的预测因素,
DCI,并且可能在症状出现之前的DCI发展早期错过最佳EVT窗口,
严重偏离正常血流动力学。这个项目的目标是开发算法,
在发展的早期阶段预测DCI和相关目标。DCI的准确预测
将使一个更积极的战略,以预防和治疗DCI的根本原因。
为实现本项目的目标,将实现以下三个目标:1)制定特定的SAH
颅内压(ICP)基于脉搏的脑动脉状态指数; 2)开发并验证预测性
aSAH后迟发性脑缺血相关靶点模型; 3)进行前瞻性研究-
具体调整和验证所开发的模型。
我们的DCI预测算法仅需要当前临床实践中可用的数据,因此它们可以
很容易被采纳。如果得到验证,这些算法将使临床医生能够监测DCI的风险
积极主动地进行适当的治疗。拟议的前瞻性研究
算法的实现和适应将为未来的临床试验做好准备,以测试
基于算法的干预
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Hu其他文献
Xiao Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Hu', 18)}}的其他基金
Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
- 批准号:
10561108 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:
10600239 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
- 批准号:
10406378 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Learning to Predict Delayed Cerebral Ischemia with Novel Continuous Cerebral Arterial State Index
学习用新型连续脑动脉状态指数预测迟发性脑缺血
- 批准号:
10599717 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:
10219683 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:
10228768 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Integrate Dynamic System Model and Machine Learning for Calibration-Free Noninvasive ICP
集成动态系统模型和机器学习,实现免校准无创 ICP
- 批准号:
9764511 - 财政年份:2018
- 资助金额:
$ 58.25万 - 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
- 批准号:
9268686 - 财政年份:2015
- 资助金额:
$ 58.25万 - 项目类别:
Develop&validate SuperAlarm to detect patient deterioration with few false alarms
发展
- 批准号:
8943567 - 财政年份:2015
- 资助金额:
$ 58.25万 - 项目类别:
ICP Elevation Alerting Based on a Predictive Model Hosting Platform
基于预测模型托管平台的 ICP 海拔警报
- 批准号:
8732711 - 财政年份:2012
- 资助金额:
$ 58.25万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 58.25万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 58.25万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 58.25万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 58.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 58.25万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 58.25万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 58.25万 - 项目类别:
Research Fellowships














{{item.name}}会员




