Neurotransmitter-based poly(aminoglycerol ester)s
基于神经递质的聚(氨基甘油酯)
基本信息
- 批准号:7382731
- 负责人:
- 金额:$ 20.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAmericanAnimal ModelAutologousAutologous TransplantationBehavioralBiocompatible MaterialsBiologicalBrainChemicalsClinicalCouplingDataDefectDevelopmentDopamineElectrophysiology (science)Embryonic DevelopmentEnvironmentEquipmentEstersExtracellular MatrixFamilyFibrinFigs - dietaryFoundationsFundingGelGoalsIn VitroInjuryLaboratoriesMedicineMethodsMitoticMolecularMorbidity - disease rateNatural regenerationNerveNerve RegenerationNerve TissueNeuritesNeuronsNeurotransmitter ReceptorNeurotransmittersOperative Surgical ProceduresOutcomePeripheral NervesPlayPliabilityPolymersPrevention approachPrincipal InvestigatorPublishingRangeRateRattusRecovery of FunctionRegenerative MedicineResearchResearch PersonnelRoleSiteStandards of Weights and MeasuresStructureStructure-Activity RelationshipTestingVertebral columnWorkaxon growthbasebiodegradable polymercostdensitydesignexperiencefunctional groupfunctional restorationhydrophilicityimprovedin vivoinnovationinsightmacromoleculemorphogensmultidisciplinarynanofibernanoscalenerve injurynervous system disorderneurogenesisneurotrophic factornovelnovel strategiespainful neuropathyresearch studyresponsesciatic nervetool
项目摘要
DESCRIPTION: Neurological disorders affect 20% of Americans, with an estimated annual cost of $400 billion. Current clinical approaches are unable to effectively restore the functions in damaged nerves. Our long-term goal is to use neuro-inductive biomaterials to restore functions in damaged nervous tissues. The objective of this proposal is to elucidate the structure-function relationship of a unique family of neurotransmitter-based biomaterials and explore their potential to regenerate peripheral nerves. The central hypothesis is that rationally-designed biodegradable materials with neurotransmitter functional groups can induce precise responses from neurons through their specific neurotransmitter receptors, and enhance their survival and regenerative capability. Guided by strong preliminary data, this hypothesis will be tested by pursuing two specific aims: (1) Control neuron-material interactions by systematically varying the structure of neurotransmitter-based polymers; and (2) Regenerate peripheral nerves using electrospun neurotransmitter-based polymer nanofibers. Under the first aim, an already proven synthesis strategy will be used to systematically vary the structure of the polymer regarding the backbone flexibility and hydrophilicity, and the type and density of neurotransmitters. We will examine the effects of a structural perturbation on a material's interactions with neurons in vitro and nerves in vivo. Under the second aim, we will create nerve guidance conduits using electrospun nanofibers with equipment that is already in our laboratory. The efficacy of these conduits in regenerating transected sciatic nerve will be evaluated using behavioral, electrophysiological, histological, and immunohistochemical methods. This approach is innovative because it uses chemical messengers to impart bioactivity to synthetic biodegradable polymers. The combination of work in aims 1 and 2 is expected to create a biomaterial platform capable of presenting defined density of neurotransmitter functional groups and nano-scale contact guidance to control neuronal activities. This multidisciplinary proposal combines the complementary expertise of the Principal Investigator in biomaterial design and regenerative medicine, and the Collaborators in neuropathic pain and electrophysiology. When successful, the proposed research will represent a significant advance in the rational design of biomaterials, and may enable new approaches in functional nerve regeneration. Current clinical approaches are unable to effectively restore the functions in damaged nerves. The proposed research seeks to determine the structure-function relationship of a family of novel neurotransmitter-based biomaterials and to apply these materials in functional nerve regeneration.
神经系统疾病影响20%的美国人,估计每年花费4000亿美元。目前的临床方法无法有效地恢复受损神经的功能。我们的长期目标是使用神经诱导生物材料来恢复受损神经组织的功能。该提案的目的是阐明基于神经递质的生物材料的独特家族的结构-功能关系,并探索其再生周围神经的潜力。其核心假设是,合理设计的具有神经递质功能基团的可生物降解材料可以通过其特定的神经递质受体诱导神经元的精确反应,并增强其存活和再生能力。在强有力的初步数据的指导下,这一假设将通过追求两个具体目标进行测试:(1)通过系统地改变基于神经递质的聚合物的结构来控制神经元-材料相互作用;(2)使用基于神经递质的电纺聚合物纳米纤维再生周围神经。在第一个目标下,已经证明的合成策略将用于系统地改变聚合物的骨架柔性和亲水性以及神经递质的类型和密度的结构。我们将研究结构扰动对材料与体外神经元和体内神经元相互作用的影响。在第二个目标下,我们将使用我们实验室中已经存在的设备使用静电纺丝纳米纤维创建神经引导导管。将使用行为学、电生理学、组织学和免疫组织化学方法评价这些导管在再生横断坐骨神经中的功效。这种方法是创新的,因为它使用化学信使赋予生物活性的合成生物可降解聚合物。目标1和目标2中的工作组合有望创建一种生物材料平台,该平台能够呈现神经递质官能团的定义密度和纳米级接触引导以控制神经元活动。这个多学科的建议结合了生物材料设计和再生医学的主要研究者的互补专业知识,以及神经性疼痛和电生理学的合作者。如果成功,这项研究将代表生物材料合理设计的重大进展,并可能实现功能性神经再生的新方法。目前的临床方法无法有效地恢复受损神经的功能。该研究旨在确定一系列新型神经递质生物材料的结构-功能关系,并将这些材料应用于功能性神经再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yadong Wang其他文献
Yadong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yadong Wang', 18)}}的其他基金
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
9935151 - 财政年份:2018
- 资助金额:
$ 20.83万 - 项目类别:
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
10047332 - 财政年份:2018
- 资助金额:
$ 20.83万 - 项目类别:
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
10282711 - 财政年份:2018
- 资助金额:
$ 20.83万 - 项目类别:
Extended Release of Bioactive Factors to Treat Refractory Wounds
延长释放生物活性因子来治疗难治性伤口
- 批准号:
9924291 - 财政年份:2016
- 资助金额:
$ 20.83万 - 项目类别:
Compliant and strong small arteries engineered in vitro
体外工程设计的顺应且坚固的小动脉
- 批准号:
7475932 - 财政年份:2007
- 资助金额:
$ 20.83万 - 项目类别:
Compliant and strong small arteries engineered in vitro
体外工程设计的顺应且坚固的小动脉
- 批准号:
7657297 - 财政年份:2007
- 资助金额:
$ 20.83万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 20.83万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 20.83万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 20.83万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 20.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 20.83万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 20.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




