Biodegradable metallo-elastomer
可生物降解的金属弹性体
基本信息
- 批准号:10522678
- 负责人:
- 金额:$ 35.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAmino AcidsAngiogenic FactorAntiinflammatory EffectApligrafAreaBedsBenchmarkingBindingBiocompatible MaterialsBlood VesselsClinicalCollagenCopperDoseEffectivenessElasticityElastomersEndotheliumEngineered skinEngineeringEnzymesEquilibriumExhibitsExtracellular MatrixFDA approvedFamilyFibrosisForeign BodiesFormulationGelGraft SurvivalGrowth FactorHistidineImplantIn VitroInflammationIonsKnowledgeLigand BindingLigandsMetalsModelingMusOperative Surgical ProceduresOxidation-ReductionOxidative StressPolymersPre-Clinical ModelProcessPropertyProteinsReactive Oxygen SpeciesResearchSchiff BasesSeriesSkinSkin graftSkin wound healingSpecific qualifier valueStructureStructure-Activity RelationshipSubgroupSuperoxide DismutaseSuperoxidesSurgical FlapsTestingTissuesToxic effectTransition ElementsTubeVariantVascular Endothelial Growth FactorsVertebral columnangiogenesisbiological systemsbiomaterial compatibilitycovalent bondcrosslinkdensitydesignelastomericfirst-in-humanhealingimprovedin vivomedical implantmetalloenzymemimeticsnovelpolycaprolactoneresearch clinical testingresponsesoft tissuesuccesstissue regenerationtissue repairvalidation studies
项目摘要
Biodegradable metallo-elastomer
Biodegradable elastomers are useful in many biomedical applications. Elastomers are crosslinked network
polymers. The crosslinks can be made of covalent bonds or weak bonds such as a physical bond. The former
produces thermosets, which usually have high elasticity but cannot be processed after crosslinking. The latter
produces thermoplastics, which usually have lower elasticity but are easier to process. Metal coordination bond
has medium bond strength in between covalent bonds and weak physical bonds. We will invent a series of
biodegradable metallo-elastomers where the crosslink is formed by metal coordination bonds. An advantage of
this approach is that one polymeric ligand can bind many different metal ions, thereby producing variant
elastomers, each with unique properties. Furthermore, metal ions have inherent bioactivities, an area
underexplored in biomaterials. Our preliminary study demonstrates that the materials can be highly elastic;
matching or exceeding the elasticity of elastomers crosslinked by covalent bonds. Furthermore, the resultant
elastomers contain very small amounts of metal ions and exhibit no noticeable toxicity. On the contrary, they are
more biocompatible than polycaprolactone (PCL), used in many FDA-approved medical implants.
Many transition metal ions have inherent bioactivity. Enzymes further enhance and specify these activities by
providing amino acid ligands and binding pockets. Copper ion (Cu2+) is one of the first angiogenic factors
discovered and is known to upregulate angiogenic growth factors. In redox enzymes such as superoxide
dismutase, Cu2+ provides the critical redox activity to break down the superoxide radical. This research will
elucidate the structure-function relationship of metallo-elastomers in two specific aims: the first will explore the
pro-angiogenic properties of Cu2+, the second will study the anti-ROS activities of Cu2+. Taking advantage of the
elasticity of these polymers, we will test the polymers created in this proposal in models of skin wound healing.
Aim 1 will investigate the angiogenic properties of Cu metallo-elastomers and their potential in improving the
survival of skin flaps. Aim 2 will investigate the capability of Cu metallo-elastomer to decompose reactive oxygen
species using a polymer bearing basic resemblance to the active site of superoxide dismutase. These materials
will potentially increase the integration of skin grafts.
Upon completion of this project, we expect to have built a basic framework on how metallo-elastomers interact
with biological systems. We will better understand how altering the basic structure of the elastomer will impact
its function. Furthermore, we will appreciate the effectiveness of these elastomers in increasing the survival and
integration of skin grafts and skin flaps. The knowledge gained will fundamentally impact biomaterial design and
practically impact host integration of medical implants.
可生物降解metallo-elastomer
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yadong Wang其他文献
Yadong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yadong Wang', 18)}}的其他基金
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
9935151 - 财政年份:2018
- 资助金额:
$ 35.41万 - 项目类别:
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
10047332 - 财政年份:2018
- 资助金额:
$ 35.41万 - 项目类别:
Novel surface-modified bioresorbable zinc-based stent materials
新型表面改性生物可吸收锌基支架材料
- 批准号:
10282711 - 财政年份:2018
- 资助金额:
$ 35.41万 - 项目类别:
Extended Release of Bioactive Factors to Treat Refractory Wounds
延长释放生物活性因子来治疗难治性伤口
- 批准号:
9924291 - 财政年份:2016
- 资助金额:
$ 35.41万 - 项目类别:
Compliant and strong small arteries engineered in vitro
体外工程设计的顺应且坚固的小动脉
- 批准号:
7475932 - 财政年份:2007
- 资助金额:
$ 35.41万 - 项目类别:
Neurotransmitter-based poly(aminoglycerol ester)s
基于神经递质的聚(氨基甘油酯)
- 批准号:
7382731 - 财政年份:2007
- 资助金额:
$ 35.41万 - 项目类别:
Compliant and strong small arteries engineered in vitro
体外工程设计的顺应且坚固的小动脉
- 批准号:
7657297 - 财政年份:2007
- 资助金额:
$ 35.41万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 35.41万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 35.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 35.41万 - 项目类别: