Novel Nano-Constructs to Target and Destroy Tumor Neovasculature

新型纳米结构靶向并破坏肿瘤新血管系统

基本信息

  • 批准号:
    7277051
  • 负责人:
  • 金额:
    $ 18.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Disrupting the endothelial vascular architecture associated with tumor can impact tumor growth. Conventionally designed drugs have been investigated which inhibit angiogenesis or are cytotoxic to tumor vascular endothelial cells, but have limited potency and specificity, impeding their clinical utility. We hypothesize that nano-scale carbon nanotube constructs can be designed which amplify the intrinsic targeting, binding, and therapeutic attributes of a conventional radiolabled drug construct and thereby improve the therapeutic index. These novel synthetic nanostructures will be designed as hybrid molecules consisting of biologics, radionuclides and carbon nanotubes and should have emergent anti-cancer properties. The carbon nanotube provides a platform to amplify these moieties and deliver to vascular endothelial cells. The stoichiometric amplification of targeting, binding, and therapeutic moieties should therefore improve potency, specificity, and efficacy relative to current therapeutics. The goal of this project is to target and selectively irradiate angiogenic endothelium in tumor, disrupt angiogenesis, and potently inhibit further tumor growth or eradicate tumor. Drugs have been investigated which inhibit angiogenesis or are cytotoxic to tumor vascular endothelial cells, but despite rapid accessibility they suffer from low potency and minimal specificity, weak binding interaction, rapid clearance, and a limited number of target molecules per cell. In order to overcome those issues related to low specificity and/or weak binding, a strategy will be investigated to synthetically amplify the avidity and potency of drug constructs directed against tumor neovascular endothelium. Constructs will be synthesized which have both multiple targeting moieties to increase avidity and multiple therapeutic alpha particle emitting radionuclides to increase the specific activity. In the proposed model systems, RGD peptide targeting molecules directed against tumor vasculature integrin epitopes will be examined and potent alpha emitting radionuclides are proposed as the therapeutic modality. The specific aims are: 1. To synthesize and characterize the radiolabled, targeting carbon nanotube constructs and 2. To investigate the pharmacokinetics and biodistribution of constructs in appropriate vascular models in mice and explore the therapeutic efficacy of specific constructs versus control constructs in tumored mice. Angiogenesis encompasses the proliferation of new blood vessels from existing vasculature and is a highly regulated process. Angiogenesis has a crucial role in normal physiological events such as wound healing, embryonic development and trophoblast implantation. However, it also has a role in aberrant physiological processes such as diabetic retinopathy, rheumatoid arthritis, and the growth of many aggressive solid tumors and metastatic disease. A variety of cellular processes and their respective regulatory molecules work in concert to modulate extracellular matrix remodeling, invasion, migration, and proliferation events. Interfering with aberrant angiogenesis may lessen the symptoms of retinopathy, arthritis and tumorogenesis. We hypothesize that novel nanodevices based on hybrid molecules consisting of biologics, radionuclides and carbon nanotubes will have emergent anti-cancer properties and the amplification of the intrinsic targeting, binding, and therapeutic attributes of this nanodevice should therefore improve potency, specificity, and efficacy relative to conventional anti-angiogenic agents.
描述(由申请人提供):破坏与肿瘤相关的内皮血管结构可以影响肿瘤生长。已经研究了抑制血管生成或对肿瘤血管内皮细胞具有细胞毒性的常规设计药物,但效力和特异性有限,阻碍了其临床应用。我们假设可以设计纳米级碳纳米管结构,增强传统放射性标记药物结构的内在靶向、结合和治疗特性,从而提高治疗指数。这些新型合成纳米结构将被设计为由生物制剂、放射性核素和碳纳米管组成的混合分子,并且应具有新兴的抗癌特性。碳纳米管提供了一个平台来放大这些部分并递送至血管内皮细胞。因此,相对于当前的治疗方法,靶向、结合和治疗部分的化学计量放大应该提高效力、特异性和功效。该项目的目标是靶向并选择性照射肿瘤中的血管生成内皮,破坏血管生成,并有效抑制肿瘤进一步生长或根除肿瘤。已经研究了抑制血管生成或对肿瘤血管内皮细胞具有细胞毒性的药物,但尽管可快速获得,但它们的效力低、特异性低、结合相互作用弱、清除快、每个细胞的靶分子数量有限。为了克服与低特异性和/或弱结合相关的问题,将研究一种策略来综合增强针对肿瘤新生血管内皮的药物构建体的亲和力和效力。将合成具有多个靶向部分以增加亲合力和多个治疗性α粒子发射放射性核素以增加比活性的构建体。在所提出的模型系统中,将检查针对肿瘤脉管系统整合素表位的RGD肽靶向分子,并提出有效的α发射放射性核素作为治疗方式。具体目标是: 1. 合成和表征放射性标记的靶向碳纳米管构建体; 2. 研究构建体在适当的小鼠血管模型中的药代动力学和生物分布,并探索特定构建体与对照构建体在肿瘤小鼠中的治疗效果。血管生成包括从现有脉管系统增殖新血管,并且是一个高度调控的过程。血管生成在伤口愈合、胚胎发育和滋养层植入等正常生理事件中起着至关重要的作用。然而,它也在异常的生理过程中发挥作用,例如糖尿病视网膜病变、类风湿性关节炎以及许多侵袭性实体瘤和转移性疾病的生长。多种细胞过程及其各自的调节分子协同作用,调节细胞外基质重塑、侵袭、迁移和增殖事件。干扰异常血管生成可以减轻视网膜病变、关节炎和肿瘤发生的症状。我们假设,基于由生物制剂、放射性核素和碳纳米管组成的混合分子的新型纳米装置将具有新兴的抗癌特性,并且该纳米装置的内在靶向性、结合性和治疗特性的放大因此应提高相对于传统抗血管生成剂的效力、特异性和功效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael R. McDevitt其他文献

Correction to: [89Zr]Zr‑huJ591 immuno‑PET targeting PSMA in IDH mutant anaplastic oligodendroglioma
  • DOI:
    10.1007/s00259-022-05736-6
  • 发表时间:
    2022-03-10
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Simone Krebs;Christian Grommes;Michael R. McDevitt;Sean D. Carlin;Joseph A. O’Donoghue;Maya S. Graham;Robert J. Young;Heiko Schöder;Philip H. Gutin;Neil H. Bander;Joseph R. Osborne
  • 通讯作者:
    Joseph R. Osborne
Radioimmunotherapy with alpha-emitting nuclides
  • DOI:
    10.1007/s002590050306
  • 发表时间:
    1998-09-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Michael R. McDevitt;George Sgouros;Ronald D. Finn;John L. Humm;Joseph G. Jurcic;Steven M. Larson;David A. Scheinberg
  • 通讯作者:
    David A. Scheinberg
Imaging carbon nanotube-mediated drug delivery with <sup>99m</sup>Tc and <sup>111</sup>In
  • DOI:
    10.1016/j.nucmedbio.2014.05.113
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sam Groveman;Simone Alidori;Lynn Francesconi;David A. Scheinberg;Michael R. McDevitt
  • 通讯作者:
    Michael R. McDevitt
Ruthenium(II) complexes with phenanthroline-, benzimidazole-, benzothiazole-, and pyridine-derived bidentate and tridentate ligands: reactivity and spectroscopic and electrochemical characterization
  • DOI:
    10.1007/bf00139956
  • 发表时间:
    1993-04-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Michael R. McDevitt;Yu Ru;Anthony W. Addison
  • 通讯作者:
    Anthony W. Addison
Radiopharmaceutical therapy in cancer: clinical advances and challenges
癌症中的放射性药物治疗:临床进展与挑战
  • DOI:
    10.1038/s41573-020-0073-9
  • 发表时间:
    2020-07-29
  • 期刊:
  • 影响因子:
    101.800
  • 作者:
    George Sgouros;Lisa Bodei;Michael R. McDevitt;Jessie R. Nedrow
  • 通讯作者:
    Jessie R. Nedrow

Michael R. McDevitt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael R. McDevitt', 18)}}的其他基金

Improving therapy of glioblastoma multiforme by enhancing therapeutic drug delive
通过增强治疗药物的输送来改善多形性胶质母细胞瘤的治疗
  • 批准号:
    8368338
  • 财政年份:
    2012
  • 资助金额:
    $ 18.8万
  • 项目类别:
Improving therapy of glioblastoma multiforme by enhancing therapeutic drug delive
通过增强治疗药物的输送来改善多形性胶质母细胞瘤的治疗
  • 批准号:
    8517053
  • 财政年份:
    2012
  • 资助金额:
    $ 18.8万
  • 项目类别:
Improving therapy of glioblastoma multiforme by enhancing therapeutic drug delive
通过增强治疗药物的输送来改善多形性胶质母细胞瘤的治疗
  • 批准号:
    8677818
  • 财政年份:
    2012
  • 资助金额:
    $ 18.8万
  • 项目类别:
Novel Nano-Constructs to Target and Destroy Tumor Neovasculature
新型纳米结构靶向并破坏肿瘤新血管系统
  • 批准号:
    7489411
  • 财政年份:
    2007
  • 资助金额:
    $ 18.8万
  • 项目类别:
Novel Nano-Constructs to Target and Destroy Tumor Neovasculature
新型纳米结构靶向并破坏肿瘤新血管系统
  • 批准号:
    7671483
  • 财政年份:
    2007
  • 资助金额:
    $ 18.8万
  • 项目类别:

相似国自然基金

电组装纤维素纳米晶/nano-ZnO有序结构凝胶的可控制备及其感染性创面修复的应用研究
  • 批准号:
    JCZRYB202501279
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Nano-M(On)-SiCNWs-SiC催化材料的制备及其协同催化制氢机理研究
  • 批准号:
    2025JJ70041
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
pH响应nano-PROTACs通过双重抑制DNA损 伤修复增敏乳腺癌免疫检查点阻断疗法 的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
口服 GelNB/GelMA@LSP-2nano 黏附凝胶微球 预防及治疗放射性肠炎的应用及基础研究
  • 批准号:
    Y24H030019
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
自传递nano-PROTACs通过激活级联免疫促进肿瘤化学免疫治疗的研究
  • 批准号:
    82302355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自传递nano-PROTACs通过诱导BRD4降解促进抗肿瘤光动力学治疗的研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
NbN截面型扫描nano-SQUID探针研发及磁场下特性研究
  • 批准号:
    62301542
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于SiC纳米纤维纸预浸片的SiCnf/nano-SiC陶瓷基复合材料制备及增韧机理研究
  • 批准号:
    LZ23E020003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
纳米阿霉素(Nano-DOX)规避内生机制和环境机制介导的肿瘤耐药及联用PD-L1抑制剂抗三阴性乳腺癌研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微量热法精准构筑Nano-M@MOFs高效电催化CO2转化的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

LC-MS/MS system with high-resolution mass spectrometer and nano-UHPLC - 2/2
配备高分辨率质谱仪和纳米 UHPLC 的 LC-MS/MS 系统 - 2/2
  • 批准号:
    527318363
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Major Research Instrumentation
Nano-structured RC Networks - A Pathway To Artificial Skin
纳米结构 RC 网络 - 人造皮肤的途径
  • 批准号:
    EP/Y002172/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Research Grant
CAREER: Evaluating Molecular Homogeneity in Three Nanometric Dimensions Using Nano-Projectile Secondary Ion Mass Spectrometry
职业:使用纳米弹丸二次离子质谱评估三个纳米维度的分子均匀性
  • 批准号:
    2340430
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Continuing Grant
Nano-homodyne-optofluidicsによる汎用超高感度ナノ物質検出法の創成
使用纳米零差光流控创建通用超灵敏纳米材料检测方法
  • 批准号:
    24K01322
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hybrid Thermal Probe and Laser for Direct Writing of Advanced Nano Sensors (HyProLaSens)
用于直接写入高级纳米传感器的混合热探针和激光 (HyProLaSens)
  • 批准号:
    531412015
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Major Research Instrumentation
Additive Micro/Nano-manufacturing of Structured Piezoelectric Active Materials for Intelligent Stent Monitoring
用于智能支架监测的结构化压电活性材料的增材微/纳米制造
  • 批准号:
    EP/Y003551/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Research Grant
Experimental Actinide Nano-chemistry for the Future of the Civil UK Plutonium Inventory
英国民用钚库存未来的实验锕系纳米化学
  • 批准号:
    MR/X036634/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Fellowship
微量元素Nano-Compositeを応用した象牙質再石灰化・再生を革新する組織接着性材の創成
使用微量元素纳米复合材料创建组织粘附材料,彻底改变牙本质再矿化和再生
  • 批准号:
    24K12951
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
  • 批准号:
    2328096
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Standard Grant
REU Site: Interdisciplinary Micro/nano/additive-manufacturing Program Addressing Challenges Today - Gen 3 (IMPACT-Gen3)
REU 网站:应对当今挑战的跨学科微/纳米/增材制造计划 - 第 3 代 (IMPACT-Gen3)
  • 批准号:
    2348869
  • 财政年份:
    2024
  • 资助金额:
    $ 18.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了