Oxidative carbon-carbon bond formation: a synergy of enamine and Pd(II) catalysis

氧化碳-碳键形成:烯胺和 Pd(II) 催化的协同作用

基本信息

  • 批准号:
    7220380
  • 负责人:
  • 金额:
    $ 4.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-12-14 至 2007-12-13
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Selective oxidation of organic chemicals is one of the most critical challenges facing the chemical and pharmaceutical industries today. Over the past 10 years, many groups have endeavored to couple known and novel oxidation processes to the world's most abundant oxidant, molecular oxygen. One challenging area of research in this field is the palladium(ll) mediated oxidative coupling of carbon nucleophiles with unactivated olefins. Concurrent with aerobic oxidation research, organocatalysis, particularly iminium/enamine catalysis, has garnered significant attention from the synthetic community and has proven to be extremely effective at catalyzing reactions with high levels of enantiocontrol under very mild conditions. The proposed study involves a synergy of these two concepts: to successfully merge enamine catalysis with Pd(ll) chemistry to catalyze the oxidative coupling of relatively weak a-carbonyl nucleophiles with unactivated olefins under aerobic conditions. The ultimate goal of this proposal entails probing the mechanism of the reaction and rendering it catalytic in both amine and palladium while being capable of inducing high levels of enantioselectivity. The proposed reaction proceeds via condensation of a secondary amine with a molecule containing an alkene tethered carbonyl to generate an enamine. Electrophilic activation of the tethered alkene by a palladium(ll) source leads to carbon-carbon bond formation. Hydrolysis of the resulting iminium ion with concomitant p-hydride elimination of the palladium affords the oxidatively coupled product. The newly generated Pd(0) can be reoxidized by O2 to Pd(ll) which can re-enter the catalytic cycle. It is expected that use of chiral, enantioenriched secondary amines will enable high enantiocontrol. Chiral secondary amines that have the dual role of palladium ligand will also be investigated for their potential in asymmetric reactions. The design of efficient and benign oxidative chemical transformations is critical for the development of an environmentally sustainable worldwide economy, and therefore, the health of all living things. In this application, we propose the design of a powerful yet mild chemical reaction that uses molecular oxygen as the sole oxidant and generates water as the only byproduct.
描述(由申请人提供):有机化学品的选择性氧化是当今化学和制药工业面临的最关键挑战之一。在过去的10年里,许多研究小组致力于将已知的和新的氧化过程与世界上最丰富的氧化剂分子氧结合起来。该领域中的一个具有挑战性的研究领域是钯(II)介导的碳亲核试剂与未活化烯烃的氧化偶联。在有氧氧化研究的同时,有机催化,特别是亚胺/烯胺催化,已经引起了合成界的极大关注,并已被证明在非常温和的条件下催化反应具有高水平的对映体控制是非常有效的。所提出的研究涉及这两个概念的协同作用:成功地将烯胺催化与Pd(II)化学合并,以在有氧条件下催化相对弱的α-羰基亲核试剂与未活化的烯烃的氧化偶联。该提议的最终目标需要探测反应的机制,并使其在胺和钯中具有催化作用,同时能够诱导高水平的对映选择性。所提出的反应通过仲胺与含有烯烃系留羰基的分子缩合来进行,以生成烯胺。通过钯(II)源亲电活化系链烯烃导致碳-碳键形成。水解所得的亚胺鎓离子,伴随钯的p-氢化物消除,得到氧化偶联产物。新生成的Pd(0)可以被O2再氧化成Pd(II),其可以重新进入催化循环。预期使用手性的、对映体富集的仲胺将能够实现高对映体控制。手性仲胺具有钯配体的双重作用,也将研究其在不对称反应中的潜力。设计有效和良性的氧化化学转化对于发展环境可持续的全球经济至关重要,因此,对所有生物的健康至关重要。在这个应用程序中,我们提出了一个强大而温和的化学反应,使用分子氧作为唯一的氧化剂和生成水作为唯一的副产物的设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aubry K Miller其他文献

Aubry K Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Bifunctional Catalysts for MHAT Hydrofunctionalization of Alkenes
用于烯烃 MHAT 加氢官能化的双功能催化剂
  • 批准号:
    2400341
  • 财政年份:
    2024
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
  • 批准号:
    22KJ2498
  • 财政年份:
    2023
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
electrochemical dication pool: a new strategy to couple alkenes and abundant nucleophiles
电化学双阳离子池:偶联烯烃和丰富亲核试剂的新策略
  • 批准号:
    10635132
  • 财政年份:
    2023
  • 资助金额:
    $ 4.48万
  • 项目类别:
Development of Remote Bismetalation Reaction of Alkenes via Chain Walking
链式行走烯烃远程双金属化反应的进展
  • 批准号:
    22KJ2699
  • 财政年份:
    2023
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Connective Stereospecific Generation of Alkenes Continued
烯烃的连接立体定向生成(续)
  • 批准号:
    2247031
  • 财政年份:
    2023
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Standard Grant
Expanding the small molecule toolbox through novel applications of fluorinated alkenes
通过氟化烯烃的新颖应用扩展小分子工具箱
  • 批准号:
    10714822
  • 财政年份:
    2023
  • 资助金额:
    $ 4.48万
  • 项目类别:
Methods for Enantioselective Spirocycle Synthesis and Radical Hydroamination of Trisubstituted Alkenes
三取代烯烃的对映选择性螺环合成和自由基氢胺化方法
  • 批准号:
    10785901
  • 财政年份:
    2023
  • 资助金额:
    $ 4.48万
  • 项目类别:
Ruthenium-catalyzed hydrophosphination of alkenes
钌催化的烯烃氢膦酸化
  • 批准号:
    575021-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.48万
  • 项目类别:
    University Undergraduate Student Research Awards
New Catalytic Transformations for the Synthesis of Alkenes and Organoboron Compounds
烯烃和有机硼化合物合成的新催化转化
  • 批准号:
    2102231
  • 财政年份:
    2021
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Continuing Grant
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
  • 批准号:
    21F21334
  • 财政年份:
    2021
  • 资助金额:
    $ 4.48万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了