A Comprehensive Approach to Pre-processing of Affymetrix GeneChip Data

Affymetrix 基因芯片数据预处理的综合方法

基本信息

  • 批准号:
    7195502
  • 负责人:
  • 金额:
    $ 21.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-01-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Microarray experiments allow the simultaneous analysis of differences in the expression of thousands of genes in different biological samples. Such experiments have been instrumental in detecting subtle gene expression changes in different stages and types of cancers, and enabling researchers to determine molecular responses to chemotherapy and other external stimuli. Affymetrix microarrays are widely used in biological and medical research because of production reproducibility, which facilitates the comparison of results between experiment runs. In order to obtain high- level classification and clustering analysis that can be trusted, it is important to perform various pre-processing steps on the probe-level data to control for variability in sample processing and array hybridization. The quality of the final results depends on the validity of the algorithm used for preprocessing microarray data. Therefore, improving the quality of the analysis of microarray data can have important wide-ranging effects on basic research and the resulting medical applications. In previous analysis of Affymetrix GeneChip (r) data, several important patterns that have an impact on high- level results have been uncovered. However, none of these patterns are currently considered by any of the popular algorithms for array preprocessing. For example, for the human genome platforms, thirty percent of MM probes have intensity levels that are greater than their PM counterparts, indicating the presence of cross- hybridization. Further, intensity levels of PM and MM probes are highly correlated, indicating that MM probes may be non-specifically hybridizing to the target gene. Thus, subtracting MM intensities from PM intensities, results in a reduction of the true signal, making differentially expressed genes harder to detect. This grant outlines a proposal for a data-driven model that takes into account cross-hybridization and non- specific hybridization for the analysis of Affymetrix GeneChip (r) brand arrays. Specifically, the model will examine observed PM intensities as a combination of autofluorescence, non-specific hybridization, cross- hybridization, and true signal. MM intensities will include the first three components since it is assumed that, once these background components are properly estimated, only the PM probes will carry true signal. Modeling these components separately will facilitate the determination of the contribution of each, and the ability to account for them during background correction. The performance of this new model-driven approach to the processing of Affymetrix microarray data will be evaluated in comparison with commonly used algorithms like MAS5.0, dChip and RMA using well characterized data sets to validate the improved accuracy of the final model. Implementation of this model should lead to better high-level data analysis, and correspondingly a better understanding of gene expression differences in response to disease states or environmental changes. Gene expression microarrays allow the determination of the expression levels of thousands of genes simultaneously, and have given insights into many areas of basic research, from a description of the genes that determine tumor stage, to the genes expressed during formation of vital organs during development. This project seeks to improve reliability, reproducibility, and applicability of experiments using microarray data by creating better analysis approaches for the extraction of true expression values from these data.
描述(由申请人提供):微阵列实验允许同时分析不同生物样品中数千个基因表达的差异。这些实验有助于检测不同阶段和不同类型癌症的微妙基因表达变化,并使研究人员能够确定对化疗和其他外部刺激的分子反应。亲和微阵列由于其生产的可重复性而被广泛应用于生物和医学研究,这有利于实验运行之间的结果比较。为了获得可信任的高级分类和聚类分析,重要的是对探针级数据执行各种预处理步骤以控制样品处理和阵列杂交中的可变性。最终结果的质量取决于用于预处理微阵列数据的算法的有效性。因此,提高微阵列数据分析的质量可以对基础研究和由此产生的医学应用产生重要的广泛影响。在之前对AffyssingGeneChip(r)数据的分析中,已经发现了几个对高水平结果有影响的重要模式。然而,这些模式目前都没有被任何流行的数组预处理算法所考虑。例如,对于人类基因组平台,百分之三十的MM探针具有大于其PM对应物的强度水平,表明存在交叉杂交。此外,PM和MM探针的强度水平高度相关,表明MM探针可能与靶基因非特异性杂交。因此,从PM强度中减去MM强度导致真实信号的减少,使得差异表达的基因更难检测。该资助概述了数据驱动模型的提案,该模型考虑了交叉杂交和非特异性杂交,用于分析Affymetrix GeneChip(r)品牌阵列。具体而言,该模型将检查观察到的PM强度作为自体荧光、非特异性杂交、交叉杂交和真实信号的组合。MM强度将包括前三个分量,因为假设一旦这些背景分量被正确估计,则仅PM探针将携带真实信号。分别对这些成分建模将有助于确定每个成分的贡献,并有助于在背景校正期间考虑它们。这种新的模型驱动的方法处理的Affyphin微阵列数据的性能将进行评估,与常用的算法,如MAS5.0,dChip和RMA使用良好的表征数据集,以验证最终模型的准确性提高比较。该模型的实施将导致更好的高水平数据分析,并相应地更好地理解响应疾病状态或环境变化的基因表达差异。基因表达微阵列可以同时测定数千个基因的表达水平,并为基础研究的许多领域提供了见解,从描述决定肿瘤阶段的基因到发育过程中重要器官形成期间表达的基因。该项目旨在通过创建更好的分析方法从这些数据中提取真实表达值来提高使用微阵列数据的实验的可靠性、可重复性和适用性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monnie McGee其他文献

Monnie McGee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 21.15万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了