Problems of general epistemology with special pertinence to mathematics
与数学特别相关的一般认识论问题
基本信息
- 批准号:AH/D500486/1
- 负责人:
- 金额:$ 2.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematics appears to be an example of rational inquiry about a realm of abstract entities (such as numbers, functions and structures) that does not depend on the evidence of the senses but does yield knowledge. This raises three general problems about knowledge and rational belief.1. How is it possible to have knowledge of abstract things of any kind, given that they are not perceptible, leave no perceptible traces, influence no perceptible bodies and have no location in space-time? What is the nature of such knowledge?2. How can there be knowledge of objective truths that is not based on the evidence of the senses? Attempts have been made to explain such knowledge in terms of knowledge of linguistic meanings. Can attempts of this kind succeed? If not, how is such knowledge to be explained?3. Can we give an account of rational belief acquisition that accommodates both the possibility of rational belief in ultimate premises (axioms and raw data) and rational belief acquired by inference? What is the nature of rational belief acquisition: Must a rational way of acquiring a belief tend to result in true beliefs? Or could there be circumstances in which rational ways of acquiring beliefs lead largely to false beliefs?My research aims to develop proper solutions of these problems, following critical examination of past attempts. The difficulty of these problems has led some philosophers to abandon the traditional view of mathematics and instead hold that mathematics is a useful body of falsehoods or is usefulfiction, or is to be re-interpreted as a body of truths about concrete things. My work, to be published as three articles in professional journals, will help to show why we do not need to accept such conclusions.
数学似乎是对抽象实体(如数字、函数和结构)领域进行理性探究的一个例子,它不依赖于感官的证据,但确实产生了知识。这就提出了关于知识和理性信念的三个一般性问题。既然抽象的事物是不可感知的,不留下可感知的痕迹,不影响可感知的物体,在时空中没有位置,那么,我们怎么可能有关于它们的知识呢?这种知识的本质是什么?2.不以感官的证据为基础的客观真理的知识怎么可能存在呢?人们试图用语言意义的知识来解释这种知识。这种尝试能成功吗?如果不是,那么如何解释这些知识呢?3.我们能否给出一个理性信念获得的解释,它既包含对最终前提(公理和原始数据)的理性信念的可能性,也包含通过推理获得的理性信念?理性信念获得的本质是什么:获得信念的理性方式必须倾向于导致真正的信念吗?或者,在某些情况下,获取信念的理性方式在很大程度上会导致错误的信念?我的研究旨在对过去的尝试进行批判性审查后,开发这些问题的适当解决方案。这些问题的困难性使得一些哲学家放弃了传统的数学观,转而认为数学是一个有用的谬误体,或者是有用的虚构,或者是被重新解释为关于具体事物的真理体。我的工作将在专业期刊上发表三篇文章,这将有助于说明为什么我们不需要接受这样的结论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcus Giaquinto其他文献
Marcus Giaquinto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
一类新的连分数动力系统的研究
- 批准号:11361025
- 批准年份:2013
- 资助金额:33.0 万元
- 项目类别:地区科学基金项目
全身麻醉药作用于生殖系统GABAA受体对男性生殖功能的影响及机制研究
- 批准号:30901390
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
图的一般染色数与博弈染色数
- 批准号:10771035
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
全麻药作用脑内G蛋白相关基因表达谱和调控网络的研究
- 批准号:30371375
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331278 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
The influence of general English proficiency and attitudes/orientation towards English on the development of productive knowledge of English collocations
一般英语水平和对英语的态度/取向对英语搭配生产性知识发展的影响
- 批准号:
24K04026 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A general strategy to synthesize semiconducting polymers within one minute
一分钟内合成半导体聚合物的一般策略
- 批准号:
24K08518 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: STEMEdIPRF: Increasing geoscience enrollment and engagement by transforming perceptions of geoscience among students and the general public
博士后奖学金:STEMEdIPRF:通过改变学生和公众对地球科学的看法来增加地球科学的入学率和参与度
- 批准号:
2327348 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
- 批准号:
2349052 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331277 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Standard Grant
A general continuum theory of polycrystalline materials
多晶材料的一般连续介质理论
- 批准号:
EP/X037800/1 - 财政年份:2024
- 资助金额:
$ 2.71万 - 项目类别:
Research Grant