Least Angle Regression

最小角回归

基本信息

  • 批准号:
    7293630
  • 负责人:
  • 金额:
    $ 15.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-05-15 至 2008-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This SBIR project aims to produce superior methods and software for classification and regression when there are many potential predictor variables to choose from. The methods should (1) produce stable results, where small changes in the data do not produce major changes in the variables selected or in model predictions; (2) produce accurate predictions; (3) facilitate scientific interpretation, by selecting a smaller subset of predictors which provide the best predictions; (4) allow continuous and categorical variables; and (5) support linear regression, logistic regression (predicting a binary outcome), survival analysis, and other types of regression. This project is based on least angle regression, which unifies and provides a fast implementation for a number of modern regression techniques. Least angle regression has great potential, but currently available software is limited in scope and robustness. The outcome of this project should be software which is more robust and widely applicable. This software would apply broadly, including to medical diagnosis, detecting cancer, feature selection in microarrays, and modeling patient characteristics like blood pressure. Phase I work demonstrates feasibility by extending least angle work in three key directions-categorical predictors, logistic regression, and a numerically-accurate implementation. Phase II goals include extensions to other types of explanatory variables (e.g. polynomial or spline functions, and interactions between variables), to survival and other additional regression models, and to handle missing data and massive data sets. This proposed software will enable medical researchers to obtain high prediction accuracy, and obtain stable and interpretable results, in high-dimensional situations. Predicting outcomes based on covariates, determining which covariates most affect outcomes, and adjusting treatment effects estimates for covariates, are among the most important problems in biostatistics. Prediction and feature selection are particularly difficult when there are more possible features than samples; gene microarrays and protein mass spectrometry are extreme examples of this, producing thousands to millions of measurements per sample. LARS excels at feature selection; the proposed software should enable medical researchers to obtain stable and interpretable models with better prediction accuracy in high-dimensional situations.
描述(由申请人提供):该 SBIR 项目旨在当有许多潜在的预测变量可供选择时,提供用于分类和回归的高级方法和软件。这些方法应该 (1) 产生稳定的结果,其中数据的微小变化不会对所选变量或模型预测产生重大变化; (2) 做出准确的预测; (3) 通过选择提供最佳预测的较小预测因子子集,促进科学解释; (4) 允许连续变量和分类变量; (5) 支持线性回归、逻辑回归(预测二元结果)、生存分析和其他类型的回归。该项目基于最小角度回归,它统一并提供了许多现代回归技术的快速实现。最小角度回归具有巨大的潜力,但目前可用的软件在范围和鲁棒性方面有限。该项目的成果应该是更强大且适用范围更广的软件。该软件应用广泛,包括医学诊断、癌症检测、微阵列特征选择以及血压等患者特征建模。第一阶段的工作通过在三个关键方向(分类预测器、逻辑回归和数值精确的实现)扩展最小角度工作来证明可行性。第二阶段的目标包括扩展到其他类型的解释变量(例如多项式或样条函数以及变量之间的相互作用)、生存模型和其他附加回归模型,以及处理缺失数据和海量数据集。该软件将使医学研究人员能够在高维情况下获得高预测精度,并获得稳定且可解释的结果。根据协变量预测结果,确定哪些协变量对结果影响最大,以及调整协变量的治疗效果估计,是生物统计学中最重要的问题之一。当可能的特征多于样本时,预测和特征选择尤其困难;基因微阵列和蛋白质质谱分析是这方面的极端例子,每个样本产生数千到数百万个测量结果。 LARS 擅长特征选择;所提出的软件应该使医学研究人员能够获得稳定且可解释的模型,在高维情况下具有更好的预测精度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Fraley其他文献

Chris Fraley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Fraley', 18)}}的其他基金

Reproducibility Assessment for Multivariate Assays
多变量测定的重现性评估
  • 批准号:
    8647816
  • 财政年份:
    2014
  • 资助金额:
    $ 15.85万
  • 项目类别:
Parsimonious Models for Survival Data
生存数据的简约模型
  • 批准号:
    8394875
  • 财政年份:
    2012
  • 资助金额:
    $ 15.85万
  • 项目类别:
Parsimonious Models for Survival Data
生存数据的简约模型
  • 批准号:
    8545192
  • 财政年份:
    2012
  • 资助金额:
    $ 15.85万
  • 项目类别:
Least Angle Regression
最小角回归
  • 批准号:
    7748342
  • 财政年份:
    2005
  • 资助金额:
    $ 15.85万
  • 项目类别:
Software for Fitting Non-Gaussian Random Effects Models
用于拟合非高斯随机效应模型的软件
  • 批准号:
    7003818
  • 财政年份:
    2004
  • 资助金额:
    $ 15.85万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了