Reproducibility Assessment for Multivariate Assays

多变量测定的重现性评估

基本信息

  • 批准号:
    8647816
  • 负责人:
  • 金额:
    $ 13.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

Project Summary. This Small Business Innovation Research project addresses the problem of assessing reproducibility in analyzing high-throughput data. In feature selection for data with large numbers of fea- tures, it is well known that some features will appear to affect an outcome by chance, and that subsequent predictions based on these features may not be as successful as initial results would seem to indicate. Similarly, there are often multiple stages, and many parameters, involved in the multivariate assays de- signed to analyze high-throughput profiles. For example, good results achieved with a particular combina- tion of settings for an instance of cross-validation may not generalize to other instances. The objective of this proposal is to extend new statistical methods for assessing reproducibility in replicate experiments to the context of machine learning, and demonstrate effectiveness in this application. The machine-learning methods to be investigated will include random forests, supervised principal components, lasso penal- ization and support vector machines. We will use simulated and real data from genomic applications to show the potential of this approach for providing reproducibility assessments that are not confounded with prespecified choices, for determining biologically relevant thresholds, for improving the accuracy of signal identification, and for identifying suboptimal results. Relevance. Although today's high-throughput technologies offer the possibility of revolutionizing clinical practice, the analytical tools available for extracting information from this amount of data are not yet sufficiently developed for targeted exploration of the underlying biology. This project directly addresses the need to make what the FDA terms IVDMIA (In-Vitro Diagnostic Multivariate Index Assays) transparent, interpretable, and reproducible, and is thus an opportunity to improve analysis products and services provided to companies that identify, characterize, and validate biomarkers for clinical diagnostics and drug development decision points. The long-term goal of the proposed project is to develop a platform for biomarker discovery and integrative genomic analysis, with reproducibility assessment incorporated into multivariate assays. This will enable evaluation and improvement of approaches to detecting the biological factors that affect a particular outcome, and lead to more efficient and more effective methods for disease diagnosis, treatment monitoring, and therapeutic drug development.
项目摘要。这个小企业创新研究项目解决了评估问题, 高通量数据分析的可重复性。在大量有限元数据的特征选择中 然而,众所周知,某些特征似乎会偶然影响结果,并且随后的特征可能会影响结果。 基于这些特征的预测可能不像最初的结果所显示的那样成功。 类似地,在多变量测定中通常涉及多个阶段和许多参数, 签署了高通量分析例如,用特定的组合实现的良好结果- 用于交叉验证实例的设置的选择不能推广到其它实例。的目标 这一建议是将用于评估重复实验中再现性的新统计方法扩展到 机器学习的背景,并在此应用程序中证明有效性。机器学习 研究的方法将包括随机森林,监督主成分,套索刑罚, 化和支持向量机。我们将使用来自基因组应用的模拟和真实的数据, 显示了该方法提供重现性评估的潜力, 预先指定的选择,用于确定生物学相关阈值,用于提高信号的准确性 识别和识别次优结果。 本案无关虽然今天的高通量技术提供了革命性的临床应用的可能性, 实践中,可用于从这些数据中提取信息的分析工具还没有 足以有针对性地探索潜在的生物学。该项目直接针对 需要使FDA术语IVDMIA(体外诊断多变量指数测定)透明化, 可解释和可再现,因此是改进分析产品和服务的机会 提供给识别、表征和验证临床诊断生物标志物的公司, 药物开发决策点。拟议项目的长期目标是开发一个平台, 生物标志物发现和综合基因组分析,并将再现性评估纳入 多变量分析这将有助于评估和改进检测生物污染物的方法。 影响特定结果的因素,并导致更有效和更有效的疾病治疗方法 诊断、治疗监测和治疗药物开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Fraley其他文献

Chris Fraley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Fraley', 18)}}的其他基金

Parsimonious Models for Survival Data
生存数据的简约模型
  • 批准号:
    8394875
  • 财政年份:
    2012
  • 资助金额:
    $ 13.11万
  • 项目类别:
Parsimonious Models for Survival Data
生存数据的简约模型
  • 批准号:
    8545192
  • 财政年份:
    2012
  • 资助金额:
    $ 13.11万
  • 项目类别:
Least Angle Regression
最小角回归
  • 批准号:
    7748342
  • 财政年份:
    2005
  • 资助金额:
    $ 13.11万
  • 项目类别:
Least Angle Regression
最小角回归
  • 批准号:
    7293630
  • 财政年份:
    2005
  • 资助金额:
    $ 13.11万
  • 项目类别:
Software for Fitting Non-Gaussian Random Effects Models
用于拟合非高斯随机效应模型的软件
  • 批准号:
    7003818
  • 财政年份:
    2004
  • 资助金额:
    $ 13.11万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 13.11万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了