Detecting Errors in Blood Labs Using Bayesian Networks

使用贝叶斯网络检测血液实验室中的错误

基本信息

  • 批准号:
    7210158
  • 负责人:
  • 金额:
    $ 26.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The Institute of Medicine seminal report on medical errors highlighted the urgency of their identification. Medical errors are estimated to cost the U.S. between $17 billion and $29 billion a year. Clinical laboratories provide about 70% of the data used to make clinical decisions and produce an estimated 70 million errors per year in the U.S. Current methods for detecting clinical laboratory errors can be improved. Our hypothesis is that a Bayesian approach will improve error detection. The long-term objective of this project is to evaluate if Bayesian networks are more accurate than laboratory experts in detecting errors in clinical laboratory data. We use non-diabetic, pre-diabetic and diabetic clinical trial blood panel data as models for this research. The specific aims of this proposal are: (1) To construct and validate a Bayesian belief network designed to detect errors in the clinical laboratory values. One that expands on our preliminary work to include other factors that influence measured values. To accomplish this aim we will extract and clean a data set from a randomized controlled trial investigating diabetes treatments. We randomly split the data into a training set and a test set, insert errors into each data set in ways analogous to how they would be rendered naturally and validate a Bayesian belief network from the training data using a 10-fold cross validation. By varying the probability threshold used to classify data as erroneous, we will determine the sensitivity and specificity of the network as well as the area under the receiver operating characteristics curve. Finally, network vs. human expert performance will be compared on measures of sensitivity, specificity, and (z-critical) statistical differences between areas under the receiver operating characteristics curves. (2) To determine whether the Bayesian network in Aim 1 generalizes to pre- and non-diabetic populations. We will test whether the network structure in Aim 1, is effective in detecting laboratory errors in more general data sets with only parameter learning. We will perform a 10-fold cross-validation over learned network parameter estimates in each of a pre- and a non-diabetic data set. We will determine the sensitivity and specificity of the network in each data set as well as the (z-critical) statistical differences between areas under the receiver operating characteristics curve. Finally, network vs. human expert performance will be compared on the aforementioned measures. The project's health-relatedness is evident by its goal of reducing clinical laboratory errors that can adversely affect the health of healthcare recipients. The success of this project will result in the development of a method that clinical laboratories may use to detect errors in practice and save both lives and substantial health-care resources. By reducing errors in the clinical laboratory, lives and substantial health-care resources will be saved.
描述(由申请人提供): 医学研究所关于医疗差错的开创性报告强调了识别医疗差错的紧迫性。据估计,医疗差错每年给美国造成170亿至290亿美元的损失。临床实验室提供了约70%用于做出临床决策的数据,并在美国每年产生估计7000万个错误。当前检测临床实验室错误的方法可以改进。我们的假设是,贝叶斯方法将提高错误检测。该项目的长期目标是评估贝叶斯网络在检测临床实验室数据中的错误方面是否比实验室专家更准确。我们使用非糖尿病,糖尿病前期和糖尿病临床试验的血液面板数据作为本研究的模型。 本研究的具体目标是:(1)建立并验证一个贝叶斯信念网络,用于检测临床实验室值中的错误。它扩展了我们的初步工作,包括影响测量值的其他因素。为了实现这一目标,我们将从一项研究糖尿病治疗的随机对照试验中提取和清理数据集。我们将数据随机分为训练集和测试集,以类似于自然呈现的方式将错误插入每个数据集,并使用10倍交叉验证从训练数据中验证贝叶斯信念网络。通过改变用于将数据分类为错误的概率阈值,我们将确定网络的灵敏度和特异性以及接收器操作特征曲线下的面积。最后,将比较网络与人类专家的性能,衡量灵敏度、特异性和接收器操作特征曲线下区域之间的(z临界)统计差异。(2)确定目标1中的贝叶斯网络是否适用于糖尿病前期和非糖尿病人群。我们将测试目标1中的网络结构是否能有效地检测更一般的数据集中的实验室错误,而只需要参数学习。我们将对每个糖尿病前和非糖尿病数据集的学习网络参数估计值进行10倍交叉验证。我们将确定网络在每个数据集中的灵敏度和特异性,以及受试者工作特征曲线下区域之间的(z临界)统计差异。最后,网络与人类专家的性能将在上述措施进行比较。该项目的健康相关性是显而易见的,其目标是减少临床实验室错误,可能会对医疗保健接受者的健康产生不利影响。该项目的成功将导致临床实验室可能用于检测实践中的错误并节省成本的方法的发展。 生命和大量的卫生保健资源。通过减少临床实验室的错误, 将节省大量的保健资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JASON N. DOCTOR其他文献

JASON N. DOCTOR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JASON N. DOCTOR', 18)}}的其他基金

Study in Outpatient Medicine using Nudges to improve Sleep: The SOMNUS Trial
使用助推改善睡眠的门诊医学研究:SOMNUS 试验
  • 批准号:
    10737562
  • 财政年份:
    2023
  • 资助金额:
    $ 26.07万
  • 项目类别:
Application of Economics & Social psychology to improve Opioid Prescribing Safety (AESOPS) Trial
经济学应用
  • 批准号:
    10007047
  • 财政年份:
    2017
  • 资助金额:
    $ 26.07万
  • 项目类别:
Application of Economics & Social psychology to improve Opioid Prescribing Safety (AESOPS) Trial
经济学应用
  • 批准号:
    10249262
  • 财政年份:
    2017
  • 资助金额:
    $ 26.07万
  • 项目类别:
Application of Economics & Social psychology to improve Opioid Prescribing Safety (AESOPS) Trial
经济学应用
  • 批准号:
    9419638
  • 财政年份:
    2017
  • 资助金额:
    $ 26.07万
  • 项目类别:
Application of Economics & Social psychology to improve Opioid Prescribing Safety (AESOPS) Trial
经济学应用
  • 批准号:
    10461238
  • 财政年份:
    2017
  • 资助金额:
    $ 26.07万
  • 项目类别:
Application of Economics & Social psychology to improve Opioid Prescribing Safety (AESOPS) Trial
经济学应用
  • 批准号:
    10017802
  • 财政年份:
    2017
  • 资助金额:
    $ 26.07万
  • 项目类别:
Use of Behavioral Economics to Improve Treatment of Acute Respiratory Infections
利用行为经济学改善急性呼吸道感染的治疗
  • 批准号:
    8060256
  • 财政年份:
    2010
  • 资助金额:
    $ 26.07万
  • 项目类别:
Roybal Center for Behavioral Interventions in Aging
皇家衰老行为干预中心
  • 批准号:
    10227947
  • 财政年份:
    2004
  • 资助金额:
    $ 26.07万
  • 项目类别:
Roybal Center for Behavioral Interventions in Aging
皇家衰老行为干预中心
  • 批准号:
    9810956
  • 财政年份:
    2004
  • 资助金额:
    $ 26.07万
  • 项目类别:
Guiding Aging Long-Term Opioid Therapy Users Into Safer Use Patterns
指导老年长期阿片类药物治疗使用者养成更安全的使用模式
  • 批准号:
    10615508
  • 财政年份:
    2004
  • 资助金额:
    $ 26.07万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 26.07万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 26.07万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 26.07万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 26.07万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 26.07万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 26.07万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 26.07万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 26.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了