Molecular Engineering Approach to Study Long Term Synaptic Plasticity
研究长期突触可塑性的分子工程方法
基本信息
- 批准号:7343372
- 负责人:
- 金额:$ 57.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:Afferent NeuronsAnimal ModelAplysiaAxonBioinformaticsBiologicalBiologyBiomedical EngineeringBiomedical ResearchBrainCellsChemistryChromosome PairingClassColorDNA SequenceDistantEngineeringEukaryotic CellEventExperimental ModelsFoundationsFunctional ImagingGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenomicsGoalsGrowthImageIn Situ HybridizationLeadLearningLifeLocalizedLongitudinal StudiesMemoryMessenger RNAModificationMolecularMolecular ProbesMonitorMotor NeuronsNeuritesNeurobiologyNeuronal PlasticityNeuronsNeurosciencesNumbersPatternPhasePhenotypePhysiologicalPopulationPresynaptic TerminalsProcessRNARegulator GenesResearchResearch PersonnelResolutionRoleSchemeSensorySerotoninSignal TransductionStagingSynapsesSynaptic TransmissionSynaptic plasticitySystemTechnologyTestingTimeTranscriptVariantbaseconceptcostdaydesigndigitalfunctional genomicsgene functioninnovationnervous system disorderneuronal growthnew technologynovelresearch and developmentsingle cell analysissynaptogenesistooltranscriptomics
项目摘要
DESCRIPTION (provided by investigator): The objectives of the proposed research are the development of new molecular engineering technologies for large-scale gene expression analysis from single neurons, and applications of these technologies to identify and characterize genes that are involved in long-term synaptic plasticity and growth. We will combine research expertise in Chemistry, Engineering and Biology to pursue the research and development of the following new molecular engineering approaches: (i) Massive Parallel DNA Sequencing Chip System for digital gene expression analysis from single cells and cell compartments; and (ii) Novel Molecular Probes for Real-time monitoring of multiple mRNA species in living neurons and defined cellular microdomains. Each of these technologies will be rigorously tested and validated using the simpler memory-forming network of Aplysia, a unique model organism for neurobiology. As a "proof-of concept", we will focus on using these approaches for the identification of gene-regulatory networks underlying the learning-induced synaptic growth. Specifically, we will characterize a molecular cascade of events induced by serotonin, leading to the formation of new synapses and a long-term enhancement of synaptic strength also known as cellular manifestations of learning and memory mechanisms. The long-term goal of this project is to implement these new technologies to explore two fundamental brain mechanisms: (1) the molecular basis of neuronal growth; (2) the molecular signals controlling synapse-specific neuronal plasticity. Using the sensory neurons of the neuronal networks in Aplysia as an experimental model, we will study the role of asymmetric mRNA distribution in integrative functions and phenotypes of eukaryotic cells. We will use a hierarchical design to achieve structural resolution of single-cell profiling in a descending fashion, where a parallel genomic and functional analysis will be performed according to the following scheme: single neuron->single axon->single synapse. The gene expression profiling will be validated using a set of complementary approaches, correlated with functional imaging of selected mRNAs at functionally characterized neurons and synaptic terminals during various stages of 5-HT induced synaptic growth. The combined approach based on Chemistry, Engineering, and Neuroscience will be used to understand how neurons and synapses operate in the context of learning and memory. The technologies developed and the biological discoveries made in the project will have a broad impact in deciphering the molecular mechanisms of neurological disorders.
描述(由研究者提供):拟议研究的目标是开发新的分子工程技术,用于单个神经元的大规模基因表达分析,并应用这些技术来识别和表征参与长期突触可塑性和生长的基因。 我们将结合联合收割机在化学、工程和生物学方面的研究专长,研究和开发以下新的分子工程方法:(i)大规模并行DNA测序芯片系统,用于单细胞和细胞区室的数字基因表达分析;以及(ii)用于实时监测活神经元和限定细胞微区中多种mRNA种类的新型分子探针。 这些技术中的每一项都将使用更简单的记忆形成网络进行严格的测试和验证,这是一种独特的神经生物学模式生物。 作为一个“概念验证”,我们将专注于使用这些方法来识别学习诱导的突触生长的基因调控网络。 具体来说,我们将描述由5-羟色胺诱导的分子级联事件,导致新突触的形成和突触强度的长期增强,也称为学习和记忆机制的细胞表现。 该项目的长期目标是利用这些新技术探索两种基本的脑机制:(1)神经元生长的分子基础;(2)控制突触特异性神经元可塑性的分子信号。 本研究以感觉神经元为实验模型,研究mRNA的不对称分布在真核细胞整合功能和表型中的作用。 我们将使用分层设计以降序方式实现单细胞分析的结构分辨率,其中将根据以下方案进行平行的基因组和功能分析:单个神经元->单个轴突->单个突触。 将使用一组互补方法验证基因表达谱,与5-HT诱导的突触生长的各个阶段期间在功能表征的神经元和突触末端处的选定mRNA的功能成像相关。 基于化学,工程和神经科学的综合方法将用于了解神经元和突触在学习和记忆的背景下如何运作。 该项目开发的技术和生物学发现将对破译神经系统疾病的分子机制产生广泛影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JINGYUE JU其他文献
JINGYUE JU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JINGYUE JU', 18)}}的其他基金
Discovery and Optimization of Inhibitors of SARS-CoV-2 Polymerase and Exonuclease
SARS-CoV-2聚合酶和核酸外切酶抑制剂的发现和优化
- 批准号:
10513924 - 财政年份:2022
- 资助金额:
$ 57.74万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8703796 - 财政年份:2012
- 资助金额:
$ 57.74万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8542899 - 财政年份:2012
- 资助金额:
$ 57.74万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8895802 - 财政年份:2012
- 资助金额:
$ 57.74万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
8439403 - 财政年份:2012
- 资助金额:
$ 57.74万 - 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
- 批准号:
9128063 - 财政年份:2012
- 资助金额:
$ 57.74万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
8091384 - 财政年份:2009
- 资助金额:
$ 57.74万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
7714932 - 财政年份:2009
- 资助金额:
$ 57.74万 - 项目类别:
An Integrated System for DNA Sequencing by Synthesis
DNA 合成测序集成系统
- 批准号:
7923565 - 财政年份:2009
- 资助金额:
$ 57.74万 - 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
- 批准号:
7923389 - 财政年份:2009
- 资助金额:
$ 57.74万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 57.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists