Genomic Approaches to Deciphering Memory Circuits

破译记忆回路的基因组方法

基本信息

  • 批准号:
    8542899
  • 负责人:
  • 金额:
    $ 38.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-10 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective of the proposed research is to conduct a thorough single-cell and cell-compartment gene expression study through the application of high throughput genomic technologies to identify the genomic bases of neuronal identity, polarity and plasticity. Utilizing the well-studied gill withdrawal reflex memory circuit from the model organism Aplysia californica, our goal is to define systematically the molecular repertoire (genomic blueprint) of the neurites and individual synapses of the key neurons that make up this cellular ensemble. We will define the compartmental transcriptomes (the sets of mRNAs, miRNAs and other ncRNAs) within the components of the functional circuit (cells and synapses), which are reconstituted in vitro by co- culture of 2-4 of its best characterized cells (L7 motor neuron, sensory neuron, stimulatory and inhibitory interneurons). This fully operational neural circuit reconstructed in cell culture bears many important properties of the intact circuit, and has been used with great success to ascertain the molecular underpinnings of memory formation in Aplysia, numerous aspects of which are conserved within the animal kingdom, including in the human brain. The systems biology approach will be applied to reveal gene regulatory networks and their potential role in the establishment and maintenance of long-term memory using learned fear as an experimental paradigm, focusing on synaptic mechanisms of long-term facilitation (LTF) and depression (LTD). We will use this genomic and systems biology approach to explore the following three fundamental brain mechanisms: (1) the molecular basis of neuronal identity, by revealing those transcripts that are unique to or shared among these neurons or specialized synapses; (2) the molecular signals controlling cellular polarity and the formation of the precise pattern of interconnections which underlie behavior, in part directed by the distribution of mRNAs in the central and peripheral compartments of these cells; and (3) the molecular basis of synapse-specific neuronal plasticity and neuronal growth, with special attention paid to the mRNA repertoire within the individual synapses at the junctions between pairs of pre- and post-synaptic neurons. The combined approach will take advantage of an already established team of experts in genomics, bioengineering, neuroscience, and bioinformatics. Though these paradigms will be established in the large well-characterized neurons of Aplysia, the mechanisms revealed and the technologies developed will have a broad impact in the biology of any polarized cell type with asymmetric distribution of RNAs and proteins.
描述(由申请人提供):拟议研究的目的是通过应用高通量基因组技术进行彻底的单细胞和细胞隔室基因表达研究,以确定神经元身份、极性和可塑性的基因组基础。利用良好的研究鳃退缩反射的记忆电路从模式生物Aaplasia californica,我们的目标是系统地定义的分子库(基因组蓝图)的神经突和单个突触的关键神经元,使这个细胞合奏。我们将定义功能回路的组分(细胞和突触)内的隔室转录组(mRNA、miRNA和其他ncRNA的集合),其通过共培养2-4个其最佳表征的细胞(L7运动神经元、感觉神经元、刺激性和抑制性中间神经元)在体外重建。在细胞培养中重建的这种完全可操作的神经回路具有完整回路的许多重要特性,并已成功用于确定海兔记忆形成的分子基础,其中许多方面在动物界(包括人类)中是保守的。大脑。系统生物学方法将被应用于揭示基因调控网络及其在建立和维持长期记忆中的潜在作用,使用学习恐惧作为实验范式,重点是长时程易化(LTF)和抑郁症(LTD)的突触机制。我们将使用这种基因组和系统生物学方法来探索以下三个基本的脑机制:(1)神经元身份的分子基础,通过揭示这些神经元或专门突触所特有或共享的转录本;(2)控制细胞极性的分子信号和构成行为基础的精确的相互连接模式的形成,部分由这些细胞的中央和外周区室中的mRNA的分布指导;和(3)突触特异性神经元可塑性和神经元生长的分子基础,特别注意突触前和突触后神经元对之间的连接处的单个突触内的mRNA库。这种结合的方法将利用已经建立的基因组学、生物工程、神经科学和生物信息学专家团队。虽然这些范例将在大型的特征良好的神经元中建立,但揭示的机制和开发的技术将对任何具有RNA和蛋白质不对称分布的极化细胞类型的生物学产生广泛影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JINGYUE JU其他文献

JINGYUE JU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JINGYUE JU', 18)}}的其他基金

Discovery and Optimization of Inhibitors of SARS-CoV-2 Polymerase and Exonuclease
SARS-CoV-2聚合酶和核酸外切酶抑制剂的发现和优化
  • 批准号:
    10513924
  • 财政年份:
    2022
  • 资助金额:
    $ 38.14万
  • 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
  • 批准号:
    8703796
  • 财政年份:
    2012
  • 资助金额:
    $ 38.14万
  • 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
  • 批准号:
    8895802
  • 财政年份:
    2012
  • 资助金额:
    $ 38.14万
  • 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
  • 批准号:
    9128063
  • 财政年份:
    2012
  • 资助金额:
    $ 38.14万
  • 项目类别:
Genomic Approaches to Deciphering Memory Circuits
破译记忆回路的基因组方法
  • 批准号:
    8439403
  • 财政年份:
    2012
  • 资助金额:
    $ 38.14万
  • 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
  • 批准号:
    8091384
  • 财政年份:
    2009
  • 资助金额:
    $ 38.14万
  • 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
  • 批准号:
    7714932
  • 财政年份:
    2009
  • 资助金额:
    $ 38.14万
  • 项目类别:
An Integrated System for DNA Sequencing by Synthesis
DNA 合成测序集成系统
  • 批准号:
    7923565
  • 财政年份:
    2009
  • 资助金额:
    $ 38.14万
  • 项目类别:
Single Molecule DNA Sequencing by Fluorescent Nucleotide Reversible Terminators
通过荧光核苷酸可逆终止子进行单分子 DNA 测序
  • 批准号:
    7923389
  • 财政年份:
    2009
  • 资助金额:
    $ 38.14万
  • 项目类别:
Molecular Engineering Approach to Study Long Term Synaptic Plasticity
研究长期突触可塑性的分子工程方法
  • 批准号:
    7561660
  • 财政年份:
    2008
  • 资助金额:
    $ 38.14万
  • 项目类别:

相似海外基金

How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
  • 批准号:
    DP220100070
  • 财政年份:
    2023
  • 资助金额:
    $ 38.14万
  • 项目类别:
    Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
  • 批准号:
    23K05594
  • 财政年份:
    2023
  • 资助金额:
    $ 38.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10477437
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
  • 批准号:
    10315571
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10680037
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10654779
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10275133
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
  • 批准号:
    10470747
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
  • 批准号:
    RGPIN-2014-05517
  • 财政年份:
    2018
  • 资助金额:
    $ 38.14万
  • 项目类别:
    Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
  • 批准号:
    RGPIN-2014-05517
  • 财政年份:
    2017
  • 资助金额:
    $ 38.14万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了