Nociceptive input to cerebellar pathways and its behavioural significance

小脑通路的伤害性输入及其行为意义

基本信息

  • 批准号:
    BB/D002486/1
  • 负责人:
  • 金额:
    $ 63.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

All living creatures have to deal with pain - it's an unpleasant, but vital experience that safeguards animal welfare and ultimately, survival. Pain is a warning, a signal that you need to do something. Normally you have two choices: either move away and escape serious injury; or, if you're already hurt, you simply have to cope with the pain. Your brain recognises the difference between these two kinds of pain and works out the best bodily response. Escaping pain means that an animal has to rapidly get up and go. It has to run, jump, perhaps fly or swim to get away from the threat - this is an active response to escapable pain. To escape the pain animals have to move and movement requires increased muscular activity. When muscles go to work in an emergency they demand increases in blood pressure, heart rate and breathing to fuel them with extra oxygen and nutrients. In contrast, there is no escaping the pain of a stomach ache. When you move, the pain stays with you - all that can be done is to endure it, to try and cope with it. This is a passive response to inescapable pain. The best thing to do is to try and protect the injured tissues, which means 'lying low', keeping movement to a minimum - the opposite of an active response. To be effective, active and passive responses to pain are complex and they need body and brain to work together in a highly co-ordinated way. It is the body that responds to pain, but it is the brain that co-ordinates the respective changes in movement and in heart and lung functions. It is likely that escapable and inescapable pain is each controlled by its own separate connections within the brain. We have good evidence that this is the way that brain circuits control changes in blood pressure, but much less is known about the brain circuits that control changes in bodily movement in response to these different kinds of pain. The key aim of the present work is to find out whether different types of pain activate different circuits within the brain that control movement. In particular, we will focus on brain circuits leading to the cerebellum, the major controller of body movement in mammals. We will chart pain pathways within the brain that lead to the cerebellum and we will find out whether different pathways are activated by escapable pain (e.g. pain paths arising from the skin), as opposed to those activated by inescapable pain (e.g. pain paths arising from the guts). Also, by recording the electrical signals of individual brain cells, we will find out if painful and non painful signals are sent to the cerebellum by the same route. Pain also causes stress and anxiety, which affect the way in which an animal responds to, and copes with, pain. Stress activates parts of the brain that alter incoming pain signals, which in turn change the animal's response to pain. The final part of our study will see if the 'stress and anxiety' brain centres can alter the flow of information in pain pathways leading to the cerebellum.
所有生物都必须处理疼痛-这是一种不愉快的,但重要的经验,保障动物福利,并最终生存。疼痛是一个警告,一个你需要做点什么的信号。通常情况下,你有两个选择:要么离开,避免严重的伤害;或者,如果你已经受伤了,你只需要科普疼痛。你的大脑会识别出这两种疼痛之间的区别,并做出最佳的身体反应。逃避疼痛意味着动物必须迅速起身并离开。它必须跑,跳,也许飞或游泳来摆脱威胁-这是对可逃避的疼痛的积极反应。为了逃避疼痛,动物必须移动,而移动需要增加肌肉活动。当肌肉在紧急情况下工作时,它们需要增加血压,心率和呼吸,以提供额外的氧气和营养。相比之下,没有逃避胃痛的痛苦。当你移动时,疼痛会一直伴随着你--你所能做的就是忍受它,试着去科普它,这是对无法逃避的疼痛的被动反应。最好的办法是尽量保护受伤的组织,这意味着“躺低”,保持运动到最低限度-积极的反应相反。为了有效,对疼痛的主动和被动反应是复杂的,它们需要身体和大脑以高度协调的方式共同工作。身体对疼痛做出反应,但大脑协调运动和心肺功能的相应变化。可以逃避的和不可避免的疼痛很可能是由大脑中各自独立的连接控制的。我们有很好的证据表明,这是大脑回路控制血压变化的方式,但我们对控制身体运动变化的大脑回路知之甚少,以应对这些不同类型的疼痛。这项研究的主要目的是找出不同类型的疼痛是否会激活大脑中控制运动的不同回路。特别是,我们将专注于大脑回路导致小脑,在哺乳动物的身体运动的主要控制器。我们将绘制大脑内通向小脑的疼痛通路,并找出不同的通路是否被可逃避的疼痛激活(例如,来自皮肤的疼痛通路),而不是被不可避免的疼痛激活(例如,来自内脏的疼痛通路)。此外,通过记录单个脑细胞的电信号,我们将发现疼痛和非疼痛信号是否通过相同的途径发送到小脑。疼痛也会引起压力和焦虑,这会影响动物对疼痛的反应和应对方式。压力会激活大脑的某些部分,从而改变传入的疼痛信号,从而改变动物对疼痛的反应。我们研究的最后一部分将观察“压力和焦虑”大脑中心是否可以改变通往小脑的疼痛通路中的信息流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Apps其他文献

Changes in Excitability of Ascending and Descending Inputs to Cerebellar Climbing Fibers during Locomotion
运动过程中小脑攀爬纤维上升和下降输入的兴奋性变化
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    J. Pardoe;S. Edgley;T. Drew;Richard Apps
  • 通讯作者:
    Richard Apps
Correction to: Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper
更正:小脑模块及其作为小脑操作处理单元的作用:共识文件
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Richard Apps;R. Hawkes;S. Aoki;Fredrik Bengtsson;A. M. Brown;Gang Chen;T. Ebner;P. Isope;H. Jörntell;Elizabeth P. Lackey;C. Lawrenson;B. Lumb;M. Schonewille;R. Sillitoe;Ludovic Spaeth;I. Sugihara;Antoine M. Valera;J. Voogd;D. Wylie;T. Ruigrok
  • 通讯作者:
    T. Ruigrok
Aspects of cerebellar function in relation to locomotor movements.
小脑功能与运动相关的方面。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Armstrong;Richard Apps;D. Marple‐Horvat
  • 通讯作者:
    D. Marple‐Horvat
Somatotopical organisation within the climbing fibre projection to the paramedian lobule and copula pyramidis of the rat cerebellum
爬行纤维投射到大鼠小脑旁正中小叶和锥体系结的体位组织
Event‐Triggered Averaging, Including Spike‐Triggered Averaging
事件触发平均,包括尖峰触发平均
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Apps
  • 通讯作者:
    Richard Apps

Richard Apps的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Apps', 18)}}的其他基金

Acetylcholine and cerebellar dependent motor learning
乙酰胆碱和小脑依赖性运动学习
  • 批准号:
    BB/R017336/1
  • 财政年份:
    2019
  • 资助金额:
    $ 63.1万
  • 项目类别:
    Research Grant
An Anglo-French-German consortium to understand cerebellar contributions to emotional behaviour.
一个英法德联盟致力于了解小脑对情绪行为的贡献。
  • 批准号:
    BB/R02135X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 63.1万
  • 项目类别:
    Research Grant
Back to front: importance of cerebro-cerebellar interactions in goal-directed behaviour.
从后到前:脑-小脑相互作用在目标导向行为中的重要性。
  • 批准号:
    BB/P000959/1
  • 财政年份:
    2017
  • 资助金额:
    $ 63.1万
  • 项目类别:
    Research Grant
Role of the cerebellum in survival circuits activated by fear.
小脑在恐惧激活的生存回路中的作用。
  • 批准号:
    BB/M019616/1
  • 财政年份:
    2015
  • 资助金额:
    $ 63.1万
  • 项目类别:
    Research Grant
The importance of complex spikes in cerebellar contributions to behaviour.
小脑对行为贡献的复杂尖峰的重要性。
  • 批准号:
    G1100626/1
  • 财政年份:
    2012
  • 资助金额:
    $ 63.1万
  • 项目类别:
    Research Grant
MRes systems neuroscience
系统神经科学硕士
  • 批准号:
    BB/H020918/1
  • 财政年份:
    2010
  • 资助金额:
    $ 63.1万
  • 项目类别:
    Training Grant

相似国自然基金

近空间飞行器载MIMO SAR高分辨率、宽测绘带遥感成像机理与方法
  • 批准号:
    41101317
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
  • 批准号:
    10715334
  • 财政年份:
    2023
  • 资助金额:
    $ 63.1万
  • 项目类别:
Dendritic morphology, patterns of input, and calcium signal heterogeneity in a novel subpopulation of cerebellar Purkinje cells
小脑浦肯野细胞新亚群的树突形态、输入模式和钙信号异质性
  • 批准号:
    10534975
  • 财政年份:
    2022
  • 资助金额:
    $ 63.1万
  • 项目类别:
Dendritic morphology, patterns of input, and calcium signal heterogeneity in a novel subpopulation of cerebellar Purkinje cells
小脑浦肯野细胞新亚群的树突形态、输入模式和钙信号异质性
  • 批准号:
    10656273
  • 财政年份:
    2022
  • 资助金额:
    $ 63.1万
  • 项目类别:
Human Cerebellar Function in Multiple Task Domains
多任务域中的人类小脑功能
  • 批准号:
    10624778
  • 财政年份:
    2020
  • 资助金额:
    $ 63.1万
  • 项目类别:
Synaptic Coding in the Cerebellar Corticonuclear Circuit
小脑皮质核回路中的突触编码
  • 批准号:
    10381507
  • 财政年份:
    2020
  • 资助金额:
    $ 63.1万
  • 项目类别:
Feedback loops of the vestibulocerebellum
前庭小脑的反馈回路
  • 批准号:
    10305602
  • 财政年份:
    2020
  • 资助金额:
    $ 63.1万
  • 项目类别:
Admin Supplement-Landis Award: Synaptic Coding in the Cerebellar Corticonuclear Circuit
管理补充-兰迪斯奖:小脑皮质核回路中的突触编码
  • 批准号:
    10893696
  • 财政年份:
    2020
  • 资助金额:
    $ 63.1万
  • 项目类别:
Human Cerebellar Function in Multiple Task Domains
多任务域中的人类小脑功能
  • 批准号:
    10385723
  • 财政年份:
    2020
  • 资助金额:
    $ 63.1万
  • 项目类别:
Synaptic Coding in the Cerebellar Corticonuclear Circuit
小脑皮质核回路中的突触编码
  • 批准号:
    10612364
  • 财政年份:
    2020
  • 资助金额:
    $ 63.1万
  • 项目类别:
Signal transformations in the vestibulo-ocular circuit
前庭眼回路中的信号转换
  • 批准号:
    10064571
  • 财政年份:
    2019
  • 资助金额:
    $ 63.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了