An extra dimension in nucleic acid sequence recognition
核酸序列识别的额外维度
基本信息
- 批准号:BB/D003318/1
- 负责人:
- 金额:$ 42.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years the human genome has been the subject of intense study and the sequence of all 3 billion units of information (bases) is now known. Genomic DNA is a double helix consisting of two complementary strands held together by Watson-Crick base pairs (AT and GC), and the ability to recognise specific DNA sequences forms the basis of molecular biology, molecular genetics and diagnostics. The conventional approach to DNA sequence recognition is to probe one of the two DNA strands with an oligonucleotide (short single strand of DNA) which will only bind to an equivalent length of DNA with an exactly complementary base sequence. This is an efficient process in vitro as it is easy to denature the DNA duplex by heat, thereby allowing an oligonucleotide probe to bind to one of the strands. In theory the ability to interfere with the biological function of DNA would be a very powerful means of killing viruses and curing certain diseases such as cancer. A method of achieving this objective (antisense technology) has recently emerged. This technology relies upon a chemically synthesised piece of DNA binding to mRNA and preventing protein synthesis. Antisense can be used to inhibit the synthesis of essential viral proteins and important proteins in cell proliferation (e.g. kinases). The first antisense drugs are now coming into the clinic but progress has been limited, partly because the target for antisense therapy (mRNA) is produced in large quantities in vivo (for some proteins there are as many as 25,000 mRNA precursors in a single cell) and feedback mechanisms exits to increase mRNA production if it falls below a certain level. Therefore it is almost impossible to completely inhibit mRNA. The situation at the level of the gene, however, is totally different; there are only 2 copies of each gene and even in the case of genes that occur in tandem, only a handful of copies exist. Directly switching off genes by an external agent is an extremely attractive proposition and in principle it could be achieved by blocking the double helix so that the proteins that interact with DNA can no longer function. This would prevent replication and transcription, the mechanisms by which DNA is copied and the RNA messengers (mRNA) control the synthesis of proteins. The difficulty lies in developing a chemical agent that can bind tightly to a specific region of duplex DNA in the presence of the entire human genome. If such an agent could be developed it would have profound implications in molecular biology, diagnostics and medicine. The antisense approach is of no use here as it is not possible to separate the two strands of genomic DNA in vivo to allow the antisense oligonucleotide to bind. However, Nature offers us clues to solving the problem. It has been known for some time that a third strand of natural DNA can fit into the major groove of the DNA duplex and bind in a sequence-specific manner, provided that one of the two strands of the duplex is purine-rich. The recognition rules are simple; a third strand thymine recognizes A.T and a third strand cytosine recognises G.C. Unfortunately, recognition of A.T and G.C is not sufficient, we must also have a means of recognising T.A. and C.G. In addition, the stability of triplexes at physiological pH is too low to be of value in any practical applications. Natural bases are simply not good enough and the triplex approach will only become feasible if four chemically modified bases can be developed for incorporation into triplex forming oligonucleotides to enable the sequence specific recognition of DNA duplexes. This is the aim of our research and we have four first generation base analogues. The next stage is to refine these molecules to produce a practical working system and evaluate them in diagnostic and biomedical applications.
近年来,人类基因组一直是密集研究的主题,所有30亿个信息单位(碱基)的序列现在已经知道了。基因组DNA是由沃森-克里克碱基对(AT和GC)连接在一起的两条互补链组成的双螺旋,识别特定DNA序列的能力构成了分子生物学,分子遗传学和诊断学的基础。DNA序列识别的常规方法是用寡核苷酸(DNA的短单链)探测两条DNA链中的一条,该寡核苷酸仅结合具有完全互补的碱基序列的相等长度的DNA。这是一个有效的体外过程,因为它很容易通过加热使DNA双链体变性,从而允许寡核苷酸探针结合到其中一条链上。从理论上讲,干扰DNA生物功能的能力将是杀死病毒和治愈某些疾病(如癌症)的一种非常强大的手段。最近出现了实现这一目标的方法(反义技术)。该技术依赖于化学合成的DNA片段与mRNA结合并阻止蛋白质合成。反义可用于抑制必需病毒蛋白和细胞增殖中的重要蛋白(例如激酶)的合成。第一个反义药物现在进入临床,但进展有限,部分原因是反义治疗的靶点(mRNA)在体内大量产生(对于某些蛋白质,单个细胞中有多达25,000个mRNA前体),如果mRNA福尔斯低于一定水平,则存在反馈机制以增加mRNA产量。因此,几乎不可能完全抑制mRNA。然而,在基因水平上的情况完全不同;每个基因只有2个拷贝,即使在串联发生的基因的情况下,也只有少数拷贝存在。通过外部试剂直接关闭基因是一个非常有吸引力的提议,原则上可以通过阻断双螺旋来实现,这样与DNA相互作用的蛋白质就不再起作用。这将阻止复制和转录,DNA复制和RNA信使(mRNA)控制蛋白质合成的机制。困难在于开发一种化学试剂,可以在整个人类基因组存在的情况下与双链DNA的特定区域紧密结合。如果能够开发出这样一种药物,它将在分子生物学、诊断学和医学方面产生深远的影响。反义方法在此没有用,因为不可能在体内分离基因组DNA的两条链以允许反义寡核苷酸结合。然而,大自然为我们提供了解决问题的线索。一段时间以来,人们已经知道,天然DNA的第三条链可以适合DNA双链体的大沟,并以序列特异性方式结合,前提是双链体的两条链之一富含嘌呤。识别规则很简单:第三条胸腺嘧啶识别A.T,第三条胞嘧啶识别G. C。不幸的是,仅仅承认A.T和G. C是不够的,我们还必须有一种承认T. A的方法。和重心此外,三链体在生理pH下的稳定性太低,在任何实际应用中都没有价值。天然碱基根本不够好,并且三链体方法只有在可以开发四种化学修饰的碱基用于掺入三链体形成寡核苷酸中以使得能够序列特异性识别DNA双链体时才变得可行。这是我们研究的目的,我们有四个第一代碱基类似物。下一阶段是改进这些分子以产生实际工作系统,并在诊断和生物医学应用中对其进行评估。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DNA triple-helix formation at target sites containing duplex mismatches.
在含有双链体错配的靶位点形成 DNA 三螺旋。
- DOI:10.1016/j.bpc.2006.04.016
- 发表时间:2006
- 期刊:
- 影响因子:3.8
- 作者:Rusling DA
- 通讯作者:Rusling DA
Photoinduced crosslinking of double-helical DNA by psoralen covalently linked to a triple helix-forming oligonucleotide under near-physiological conditions.
在接近生理条件下,补骨脂素与形成三螺旋的寡核苷酸共价连接,导致双螺旋 DNA 发生光诱导交联。
- DOI:10.1080/15257770701508554
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Li H
- 通讯作者:Li H
DNA triplex formation with 5-dimethylaminopropargyl deoxyuridine.
- DOI:10.1093/nar/gkn1060
- 发表时间:2009-03
- 期刊:
- 影响因子:14.9
- 作者:Rusling DA;Peng G;Srinivasan N;Fox KR;Brown T
- 通讯作者:Brown T
Synthesis of anthraquinone oligonucleotides for triplex stabilization.
用于三链体稳定的蒽醌寡核苷酸的合成。
- DOI:10.1080/15257770701506491
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Zhao Z
- 通讯作者:Zhao Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Brown其他文献
Mobile learning – a new paradigm shift in distance education?
移动学习——远程教育的新范式转变?
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Olaf Zawacki;Tom Brown;Rhena Delport - 通讯作者:
Rhena Delport
The impact of temporal hydrogen regulation on hydrogen exporters and their domestic energy transition
氢气临时监管对氢气出口国及其国内能源转型的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Leon Schumm;H. Abdel;Tom Brown;F. Ueckerdt;Michael Sterner;Davide Fioriti;Max Parzen - 通讯作者:
Max Parzen
IL-22 is Required for Th17 Cell Mediated Skin Inflammation in Murine Model of Psoriasis
银屑病小鼠模型中 Th17 细胞介导的皮肤炎症需要 IL-22
- DOI:
10.1016/j.clim.2008.03.004 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
H. Ma;Spencer C. Liang;Jing Li;L. Napierata;Tom Brown;Stephen E. Benoit;M. Senices;D. Gill;K. Dunussi;M. Collins;L. Fouser;D. Young - 通讯作者:
D. Young
Moving the Eiffel Tower to ROME: Tracing and Editing Facts in GPT
将埃菲尔铁塔移至罗马:在 GPT 中跟踪和编辑事实
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
David Bau;Steven Liu;Tongzhou Wang;Jun;Tom Brown;Benjamin Mann;Nick Ryder;Jared D Subbiah;Prafulla Kaplan;A. Dhariwal;P. Neelakantan;Girish Shyam;Amanda Sastry;Sandhini Askell;Ariel Agarwal;Herbert;Gretchen Krueger;T. Henighan;R. Child;Aditya Ramesh;Daniel M. Ziegler;Jeffrey Wu;Clemens Winter;Chris Hesse;Mark Chen;Eric Sigler;Mateusz Litwin;S. Gray;B. Chess;Christopher Clark;Sam Berner;Alec McCandlish;Ilya Radford;Sutskever Dario;Amodei;Damai Dai;Li Dong;Y. Hao;Zhifang Sui;Nicola De Cao;Wilker Aziz;Ivan Titov. 2021;Edit;J. Devlin;Ming;Kenton Lee - 通讯作者:
Kenton Lee
Critical Essays on Edward Albee
爱德华·阿尔比评论文章
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
Tom Brown;Philip C. Kolin;J. M. Davis - 通讯作者:
J. M. Davis
Tom Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Brown', 18)}}的其他基金
Advancing Oligonucleotide Therapeutics
推进寡核苷酸治疗
- 批准号:
BB/W003902/1 - 财政年份:2022
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
New oligonucleotide analogues for therapeutic applications
用于治疗应用的新型寡核苷酸类似物
- 批准号:
BB/S018794/1 - 财政年份:2019
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
New and versatile chemical approaches for the synthesis of mRNA and tRNA
用于合成 mRNA 和 tRNA 的新型多功能化学方法
- 批准号:
BB/R008655/1 - 财政年份:2018
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
Creating artificial oligonucleotides by chemical synthesis - applications in life science research, crop protection and as novel therapeutics
通过化学合成制造人工寡核苷酸 - 在生命科学研究、作物保护和新型疗法中的应用
- 批准号:
BB/R012474/1 - 财政年份:2017
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
New fluorescent probes for labelling nucleic acids
用于标记核酸的新型荧光探针
- 批准号:
BB/L01811X/1 - 财政年份:2014
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
Extending the Boundaries of Nucleic Acid Chemistry
拓展核酸化学的界限
- 批准号:
BB/J001694/2 - 财政年份:2013
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
Extending the Boundaries of Nucleic Acid Chemistry
拓展核酸化学的界限
- 批准号:
BB/J001694/1 - 财政年份:2012
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
CLIENT: CLinic-based Infection Examination through Nucleic acid Technology
客户:通过核酸技术进行临床感染检查
- 批准号:
TS/I000666/1 - 财政年份:2011
- 资助金额:
$ 42.64万 - 项目类别:
Research Grant
相似国自然基金
高维参数和半参数模型下的似然推断
- 批准号:11871263
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
用于非富勒烯聚合物太阳能电池的苯并三氮唑类二维共轭聚合物
- 批准号:51673200
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
混沌动力系统中的广义熵和维数
- 批准号:10571086
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Development of methods for highly multiplexed quantification of cancer proteomes using large-scale nanobody libraries
使用大规模纳米抗体库开发癌症蛋白质组高度多重定量的方法
- 批准号:
10714023 - 财政年份:2023
- 资助金额:
$ 42.64万 - 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10317961 - 财政年份:2021
- 资助金额:
$ 42.64万 - 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10450143 - 财政年份:2021
- 资助金额:
$ 42.64万 - 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
- 批准号:
10597685 - 财政年份:2021
- 资助金额:
$ 42.64万 - 项目类别:
NANOPHOTOSENSITIZERS FOR REGENERATIVE PHOTOTHERAPY
用于再生光疗的纳米光敏剂
- 批准号:
10461894 - 财政年份:2021
- 资助金额:
$ 42.64万 - 项目类别:
Epigenomic profiling of complex tissues with single-cell CUT&RUN
通过单细胞 CUT 对复杂组织进行表观基因组分析
- 批准号:
10553224 - 财政年份:2019
- 资助金额:
$ 42.64万 - 项目类别:
Epigenomic profiling of complex tissues with single-cell CUT&RUN
通过单细胞 CUT 对复杂组织进行表观基因组分析
- 批准号:
9918944 - 财政年份:2019
- 资助金额:
$ 42.64万 - 项目类别:
Epigenomic profiling of complex tissues with single-cell CUT&RUN
通过单细胞 CUT 对复杂组织进行表观基因组分析
- 批准号:
10610976 - 财政年份:2019
- 资助金额:
$ 42.64万 - 项目类别:
Epigenomic profiling of complex tissues with single-cell CUT&RUN
通过单细胞 CUT 对复杂组织进行表观基因组分析
- 批准号:
10089227 - 财政年份:2019
- 资助金额:
$ 42.64万 - 项目类别:
Epigenomic profiling of complex tissues with single-cell CUT&RUN
通过单细胞 CUT 对复杂组织进行表观基因组分析
- 批准号:
10331778 - 财政年份:2019
- 资助金额:
$ 42.64万 - 项目类别:














{{item.name}}会员




