Cell wall feedback signalling in Arabidopsis

拟南芥细胞壁反馈信号传导

基本信息

  • 批准号:
    BB/D020093/1
  • 负责人:
  • 金额:
    $ 78.97万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

The cell wall surrounds plant cells like a rigid armour, limiting cell expansion while at the same time giving the plant body strength and resilience. The network of cellulose and other polysaccharides is one of the biggest investments of assimilated carbon in plants. It is also a key determinant of susceptibility to pathogens. We are beginning to understand how the different components are made, but we don't understand at all how plants sense the status of their wall, whether it is intact and whether there is the right balance of the different components. How is information on the integrity of the wall transmitted into the cell? What are the immediate responses to cell wall damage on the molecular level? And what happens to the normal growth and development of the plant if we interfere with this sensory pathway? Is there feedback control of the production of the different cell wall polysaccharides? How is cell wall sensing related to pathogen detection? Finding answers to these questions of outside-inside communication will help us to better understand the fundamental workings of a plant cell. For both plants and animals, the matrix of polysaccharides and proteins that surrounds all cells is a lot more than just glue to hold tissues together- it has a major influence on what the cells do and what they develop into as the organism grows. In animals, tumour cells that 'get out of touch' with this extracellular matrix form metastases. In yeast, with a cell wall more comparable to that of plants, the surveillance system for wall integrity is hard-wired to many developmental and stress response processes. We have much indirect evidence that this is also the case for plants, but no molecular details. I want to study in a cell culture what happens when cellulose production is blocked with a herbicide. In growing cells, this soon leads to a structural defect of the cell wall. I expect that most of the signalling response happens directly beneath the cell surface, and that much of it is based on taging proteins with phosphate -a universal signal to change a protein's activity. Getting a global view of which proteins become tagged will give me a broad understanding of what happens in the cell and how it compensates for the damage. After identifying the phosphate-tagged proteins that respond to cell wall damage, I want to use genetics to understand what the proteins do and how the wall surveillance system influences development, e.g. with plants that have one or several of the genes for these proteins deleted. I will also compare the cell wall damage response with the response to microbial signals (an ongoing project) to understand how the different sensory systems are linked. There is great interest in manipulating the composition of the cell wall, for example to enhance disease resistance, or to facilitate processing of plant material for biofuel and other industrial purposes. However, many desirable changes have a negative impact on plant growth. Frequently, this may not necessarily be because of changes in the physical stability of the wall, but because the different structure triggers an alarm. In the long term, interfering with this surveillance system to make the plants more tolerant to changes in wall structure would be a practical contribution to improving biomass crops.
细胞壁像坚硬的盔甲一样包裹着植物细胞,限制了细胞的扩张,同时赋予植物身体力量和韧性。纤维素和其他多糖的网络是植物吸收碳的最大投资之一。它也是病原体易感性的关键决定因素。我们开始了解不同的成分是如何构成的,但我们根本不知道植物如何感知它们的墙的状态,它是否完好无损,以及不同成分是否有适当的平衡。关于墙的完整性的信息是如何传输到细胞中的?在分子水平上,对细胞壁损伤的直接反应是什么?如果我们干扰这个感官通路,植物的正常生长和发育会发生什么?不同细胞壁多糖的生产是否有反馈控制?细胞壁感知与病原体检测有何关系?找到这些内外沟通问题的答案将有助于我们更好地了解植物细胞的基本工作原理。对于植物和动物来说,包围所有细胞的多糖和蛋白质基质不仅仅是将组织粘合在一起的胶水-它对细胞的活动以及随着有机体的生长发育成什么有着重大影响。在动物体内,与这种细胞外基质“脱离”接触的肿瘤细胞会发生转移。在酵母中,细胞壁与植物的细胞壁更接近,对细胞壁完整性的监测系统与许多发育和胁迫反应过程紧密相连。我们有很多间接证据表明,植物也是如此,但没有分子细节。我想在细胞培养中研究当一种除草剂阻止纤维素生产时会发生什么。在生长的细胞中,这很快就会导致细胞壁的结构缺陷。我预计,大多数信号反应直接发生在细胞表面之下,其中很大一部分是基于用磷酸盐修饰蛋白质--一种改变蛋白质活性的普遍信号。获得哪些蛋白质被标记的全球视角将使我对细胞中发生的事情以及它如何补偿损伤有一个广泛的了解。在确定了对细胞壁损伤做出反应的磷酸标记蛋白质后,我想利用遗传学来了解这些蛋白质的作用以及壁监视系统如何影响发育,例如,对于那些缺失了这些蛋白质的一个或几个基因的植物。我还将比较细胞壁损伤反应与对微生物信号的反应(一个正在进行的项目),以了解不同的感觉系统是如何联系在一起的。人们对操纵细胞壁的成分非常感兴趣,例如,为了增强抗病能力,或者促进用于生物燃料和其他工业目的的植物材料的加工。然而,许多令人满意的变化对植物的生长有负面影响。通常,这可能不一定是因为墙的物理稳定性发生了变化,而是因为不同的结构触发了警报。从长远来看,干扰这一监测系统,使植物更耐受壁结构的变化,将是对改良生物质作物的实际贡献。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway.
细胞壁完整性通过一般的 1-氨基环丙烷-1-羧酸依赖、不依赖乙烯的途径控制根伸长。
  • DOI:
    10.1104/pp.111.175372
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Tsang DL
  • 通讯作者:
    Tsang DL
Cell wall integrity signaling and innate immunity in plants.
  • DOI:
    10.3389/fpls.2012.00280
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Nühse TS
  • 通讯作者:
    Nühse TS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Nuhse其他文献

Thomas Nuhse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Wall crossing现象和内禀Higgs态
  • 批准号:
    11305125
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Baeyer-Villiger单加氧酶构效关系和分子进化的研究
  • 批准号:
    31070718
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
关于任意截面导体壁中的环状形非圆截面等离子体稳定性的研究
  • 批准号:
    10375050
  • 批准年份:
    2003
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Proteolytic regulation of the Streptococcus pyogenes cell surface
化脓性链球菌细胞表面的蛋白水解调节
  • 批准号:
    10330036
  • 财政年份:
    2021
  • 资助金额:
    $ 78.97万
  • 项目类别:
Proteolytic regulation of the Streptococcus pyogenes cell surface
化脓性链球菌细胞表面的蛋白水解调节
  • 批准号:
    10209054
  • 财政年份:
    2021
  • 资助金额:
    $ 78.97万
  • 项目类别:
Proteolytic regulation of the Streptococcus pyogenes cell surface
化脓性链球菌细胞表面的蛋白水解调节
  • 批准号:
    10543099
  • 财政年份:
    2021
  • 资助金额:
    $ 78.97万
  • 项目类别:
Bacterial Mechanisms for Establishing and Maintaining Cell Polarity
建立和维持细胞极性的细菌机制
  • 批准号:
    9315903
  • 财政年份:
    2016
  • 资助金额:
    $ 78.97万
  • 项目类别:
Characterization of Feedback Regulation of Plant Cell Wall Accumulation Mediated by Receptor-Like Kinases
受体样激酶介导的植物细胞壁积累反馈调节的表征
  • 批准号:
    242012848
  • 财政年份:
    2013
  • 资助金额:
    $ 78.97万
  • 项目类别:
    Research Fellowships
4th ASM Conference on Prokaryotic Cell Biology and Development
第四届 ASM 原核细胞生物学与发育会议
  • 批准号:
    8319208
  • 财政年份:
    2012
  • 资助金额:
    $ 78.97万
  • 项目类别:
Innate and Adaptive Immune Cell Cross-Talk in Lung Allergy
肺部过敏中的先天性和适应性免疫细胞交叉对话
  • 批准号:
    7476187
  • 财政年份:
    2008
  • 资助金额:
    $ 78.97万
  • 项目类别:
Modeling for Heart, Lung, and Blood: From Cell to Organ
心脏、肺和血液建模:从细胞到器官
  • 批准号:
    7251831
  • 财政年份:
    2007
  • 资助金额:
    $ 78.97万
  • 项目类别:
Modeling for Heart, Lung, and Blood: From Cell to Organ
心脏、肺和血液建模:从细胞到器官
  • 批准号:
    7391153
  • 财政年份:
    2007
  • 资助金额:
    $ 78.97万
  • 项目类别:
The Role of PP2A in Yeast Cell Cycle Progression
PP2A 在酵母细胞周期进展中的作用
  • 批准号:
    7341756
  • 财政年份:
    2005
  • 资助金额:
    $ 78.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了