Predicting protein flexibility and stability
预测蛋白质的灵活性和稳定性
基本信息
- 批准号:7369816
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAlzheimer&aposs DiseaseAttentionBiochemistryBioinformaticsBiomedical ResearchBiophysicsCaliforniaCollaborationsComplement component C1sComputational BiologyComputer softwareConditionData SetDatabasesDevelopmentDiffusionDiseaseDisruptionElectrostaticsEntropyEnzymesEquilibriumEvolutionFigs - dietaryFinancial compensationFree EnergyGeneric DrugsGlassGoalsGrantGraphGray unit of radiation doseGrowthHeatingHomology ModelingHydration statusHydrogen BondingHydrophobic InteractionsIndividualIonic StrengthsJointsLarge-Scale SequencingLeadLigand BindingLiquid substanceLiteratureMeasuresMechanicsMediatingMethodologyMinorityModelingMolecularMotionMuscle RigidityNatureNumbersOnline SystemsOrthologous GeneOutcomePathway interactionsPharmacologyPhysical ChemistryPhysicsPliabilityProbabilityProcessProtein FamilyProteinsRangeReactionReproducibilityResearchResearch PersonnelResearch SupportS06 grantSchemeScienceScoreSiteSolutionsSolventsSpecific qualifier valueStructureStructure-Activity RelationshipSystemTechniquesTemperatureTestingThermodynamicsTimeTrainingUnderrepresented MinorityUniversitiesWorkaqueousbasecatalystcomparativecomputerized toolsconceptdesignenthalpyexperienceimprovedinsightmathematical algorithmmolecular recognitionnovelprofessorprogramsprotein foldingprotein functionprotein structure functionprototypesuccesstheoriesthree dimensional structuretooltwo-dimensional
项目摘要
A grand challenge of biophysics is to understand protein folding, stability, flexibility, and function in terms of
structure and solvent condition. A novel Distance Constraint Model (DCM) is employed to accurately predict
protein stability in aqueous solution under specified thermodynamic conditions (i.e. temperature, pH, ionic
strength, etc) from known three-dimensional structure. This project builds upon prior success of the PI in
developing efficient rigidity-graph algorithms to identify flexible and rigid regions in proteins modeled as a
fixed constraint topology, and development of the DCM. The DCM is based on the hypothesis that network
rigidity is an underlying mechanism for enthalpy-entropy compensation, yielding a mathematically precise
algorithm to account for non-additivity in free energy decompositions. A proof of concept, minimal DCM, will
be extended in this project to include explictit modeling of essential entropy-compensation mechanisms that
include (a) hydration, (b) hydrophobic interactions, (c) electrostatics interactions, with (d) a residue-specific
parameterization. These extensions will allow prediction of protein stability in mixed solvent conditions, and
bring the DCM closer to a fully transferable parameterization. However, parameter transferability is not a
requirement of this proposed work, as the utility of our minimal DCM has been firmly established. The first
outcome.of this work will be the release of a fast computational tool that harmoniously quantifies stabilitiy
and flexibility in practical computing times necessary for protien design applications. For example, local-
details of protein flexibility are quantified to identify correlated atomic motions important for induced fit of
ligand binding and allosteric conformational changes. Synergistic application of the DCM with protein family
evolutionary descriptions will provide key insight into familial variability of Quantified Stability/Flexibility
Relationships (QSFR). The second outcome will be a public accessible QSFR database providing users
wide access to DCM results and analysis tools will give users a practical means to better understand protein
function in realistic computing times needed for the post-geonomic era.
生物物理学的巨大挑战是了解蛋白质折叠,稳定性,灵活性和功能
结构和溶剂状况。采用新颖的距离约束模型(DCM)来准确预测
在指定的热力学条件下水溶液中的蛋白质稳定性(即温度,pH,离子
强度等来自已知的三维结构。该项目以PI在先前的成功为基础
开发有效的刚性图形算法,以识别建模为一种的蛋白质中的柔性和刚性区域
固定约束拓扑和DCM的开发。 DCM基于网络的假设
刚性是焓 - 内部补偿的潜在机制,从数学上精确地产生
算法在自由能分解中说明了非增强性。概念证明,最小DCM将
在该项目中延长,包括对基本熵补偿机制的解释建模
包括(a)水合,(b)疏水相互作用,(c)静电相互作用,(d)残基特异性
参数化。这些扩展将允许在混合溶剂条件下预测蛋白质稳定性,并且
使DCM更靠近完全可传递的参数化。但是,参数可传递性不是
这项提议的工作的要求,因为我们最小的DCM的效用已牢固确定。第一个
结果。这项工作将是快速计算工具的发布,该工具和谐地量化了稳定性
和灵活性在蛋白质设计应用所需的实用计算时间中。例如,本地 -
量化了蛋白质灵活性的详细信息,以确定对诱导拟合至关重要的相关原子运动
配体结合和变构构象变化。 DCM与蛋白质家族的协同应用
进化描述将为量化稳定性/灵活性的家族变异性提供关键的见解
关系(QSFR)。第二个结果将是为用户提供的公共访问QSFR数据库
广泛访问DCM结果和分析工具将为用户提供一种实用手段,以更好地了解蛋白质
在后时代所需的现实计算时间中的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald JACOBS其他文献
Donald JACOBS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald JACOBS', 18)}}的其他基金
Supplement: New computer for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:用于计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽的新计算机
- 批准号:
10798727 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
通过计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽
- 批准号:
10439131 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Supplement: Student support for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:学生支持通过计算设计肽来干扰 p53-MDM2 和 p53-sirtuin 相互作用
- 批准号:
10829740 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Elucidating beta-lactamase functional mechanisms via evolutionary conservation
通过进化保守阐明β-内酰胺酶的功能机制
- 批准号:
8432993 - 财政年份:2013
- 资助金额:
$ 37.35万 - 项目类别:
REAL TIME PROTEIN DOMAIN AND FLEXIBILITY IDENTIFICATION
实时蛋白质结构域和灵活性识别
- 批准号:
2715292 - 财政年份:1998
- 资助金额:
$ 37.35万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Developing a novel EEG-based index for evaluating amyloid and tau burden in Alzheimer's Disease
开发一种基于脑电图的新型指数来评估阿尔茨海默病中淀粉样蛋白和 tau 蛋白的负担
- 批准号:
10602059 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
- 批准号:
10673857 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别: