Elucidating beta-lactamase functional mechanisms via evolutionary conservation
通过进化保守阐明β-内酰胺酶的功能机制
基本信息
- 批准号:8432993
- 负责人:
- 金额:$ 32.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAllosteric SiteAmino Acid SequenceAntibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBenignBindingBioinformaticsBiophysicsCell WallCephalosporin ResistanceCephalosporinsComparative StudyConceptionsDataDevelopmentEntropyEnzymesEquilibriumEvolutionFamilyFinancial compensationFrightFutureGatekeepingGenerationsGenesGram-Negative BacteriaGram-Positive Bacterial InfectionsHydrolysisIonsLactamaseLactamsLeadMechanicsMediatingMetalsMethodsMetricModelingMutationOrthologous GenePatternPenetrationPenicillin ResistancePenicillinsPeptide Sequence DeterminationPhylogenetic AnalysisPhylogenyPropertyProteinsPublic HealthResistanceSeriesSerineStructureStructure-Activity RelationshipSystemThermodynamicsVariantWorkZincbacterial resistancebasebeta-Lactamasecombatcomparativedesigneffective therapyenthalpyflexibilityglobal healthimprovedinsightinterestmembermolecular dynamicsnovel therapeuticsprotein structurepublic health relevanceresistance mechanism
项目摘要
DESCRIPTION (provided by applicant): Penicillins and chemically related molecules are our most abundant and common used class of antibiotics, which are characterized by a conserved 4-atom ¿-lactam ring. Historically, they have been an effective treatment to gram-positive bacterial infections; however, the cell wall of gram-negative bacteria poses an effective barrier to antibiotic penetration. Conversely, second generation cephalosporins are also effective against gram-negative bacteria because they are able to penetrate the cell wall. Nevertheless, an increasing number of bacteria are resistant due to the enzyme ?-lactamase (BL). BL, which is expressed in the cell wall, hydrolyzes the ? -lactam ring, thus rendering the antibiotic ineffective. Due to decades of antibiotic overuse, BL enzymes have alarmingly evolved additional resistances that are now breaking down our last lines of defense. For example, extended spectrum ? -lactamases (ESBL) also hydrolyze the ? -lactam ring of cephalosporins, which have generally been resistant to BL activity. As such, a better understanding of BL resistance mechanisms is imperative so that new and more effective antibiotics can be developed quickly. There are four common classes of BL enzymes, which reflect specific sequence, structure and antibiotic resistance patterns. The Class A, C and D enzymes share a serine-based hydrolysis, whereas the catalytic mechanism of Class B enzymes is based on a zinc ion. However, little is known about how dynamics and stability vary across the superfamily. Are stability and/or dynamical mechanisms conserved across the superfamily? Are certain mechanisms critical to function? Can mechanistic differences help explain antibiotic resistance patterns? Is allostery conserved across the superfamily? These are the types of unanswered questions this proposal seeks to answer. To that end, we will employ a powerful and fast computational distance constraint model (DCM) to characterize the serine-based classes. While broad characterization across the BL superfamily has not yet been done, a small number of Class A structures have been studied by NMR and molecular dynamics simulation. Interestingly, these structures appear extraordinarily rigid, punctuated by flexible loop regions that may or may not be related to function. Our preliminary DCM characterizations across Class A enzymes reproduce these results. Even so, there is significant diversity within dynamical quantities across
the family, which reflects evolutionary out-groups and, in many cases, parallels the onset of extended-spectrum activities. Taken together, these preliminary results highlight how the synthesis of biophysical descriptions with the paradigm of comparative bioinformatics synergistically improves the importance and accuracy of our characterizations. As such, we propose a series of additional studies along these lines to expand our understanding of BL structure and function, potentially paving the way to new therapeutic opportunities.
描述(由申请人提供):青霉素和化学相关分子是我们最丰富和最常用的一类抗生素,其特征在于保守的 4 原子 β-内酰胺环。从历史上看,它们一直是治疗革兰氏阳性细菌感染的有效方法。然而,革兰氏阴性细菌的细胞壁对抗生素的渗透构成了有效的屏障。相反,第二代头孢菌素也能有效对抗革兰氏阴性菌,因为它们能够穿透细胞壁。然而,越来越多的细菌由于β-内酰胺酶(BL)而产生耐药性。 BL 在细胞壁中表达,水解 ? -内酰胺环,从而使抗生素无效。由于几十年来抗生素的过度使用,BL 酶已经令人震惊地进化出了额外的耐药性,这些耐药性现在正在打破我们的最后一道防线。例如,扩展频谱? -内酰胺酶 (ESBL) 也水解 ? -头孢菌素的内酰胺环,通常对 BL 活性具有抗性。因此,更好地了解 BL 耐药机制势在必行,以便快速开发新的、更有效的抗生素。 BL 酶有四种常见类别,反映了特定的序列、结构和抗生素耐药性模式。 A类、C类和D类酶共享基于丝氨酸的水解,而B类酶的催化机制基于锌离子。然而,人们对整个超家族的动态和稳定性如何变化知之甚少。稳定性和/或动力机制在整个超家族中是否保守?某些机制对于发挥作用至关重要吗?机制差异可以帮助解释抗生素耐药性模式吗?变构在整个超家族中是否保守?这些是该提案试图回答的未解答的问题类型。为此,我们将采用强大且快速的计算距离约束模型(DCM)来表征基于丝氨酸的类别。虽然 BL 超家族的广泛表征尚未完成,但已通过 NMR 和分子动力学模拟研究了少量 A 类结构。有趣的是,这些结构显得异常刚性,中间夹杂着可能与功能相关或无关的柔性环区域。我们对 A 类酶的初步 DCM 表征重现了这些结果。即便如此,不同领域的动态量之间仍存在显着差异
家庭,反映了进化的外群体,并且在许多情况下,与扩展谱活动的开始相平行。总而言之,这些初步结果强调了生物物理描述与比较生物信息学范式的综合如何协同提高我们表征的重要性和准确性。因此,我们提出了一系列额外的研究,以扩大我们对 BL 结构和功能的理解,可能为新的治疗机会铺平道路。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald JACOBS其他文献
Donald JACOBS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald JACOBS', 18)}}的其他基金
Supplement: New computer for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:用于计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽的新计算机
- 批准号:
10798727 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
通过计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽
- 批准号:
10439131 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Supplement: Student support for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:学生支持通过计算设计肽来干扰 p53-MDM2 和 p53-sirtuin 相互作用
- 批准号:
10829740 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
REAL TIME PROTEIN DOMAIN AND FLEXIBILITY IDENTIFICATION
实时蛋白质结构域和灵活性识别
- 批准号:
2715292 - 财政年份:1998
- 资助金额:
$ 32.3万 - 项目类别:
相似海外基金
Allosteric site prediction and transmission of functional residues with atomistic graph analysis
通过原子图分析进行功能残基的变构位点预测和传递
- 批准号:
2859072 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Studentship
Creation of novei anticancer lead compounds targeting the allosteric site of c-Met kinase
创建针对 c-Met 激酶变构位点的新型抗癌先导化合物
- 批准号:
16K08327 - 财政年份:2016
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
- 批准号:
8595027 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
- 批准号:
8704718 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
- 批准号:
8874171 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
STRUC DETERMINATION OF METAL-SUBSTITUTED & ALLOSTERIC SITE VARIANTS OF H INFLU
金属取代物的结构测定
- 批准号:
7955561 - 财政年份:2009
- 资助金额:
$ 32.3万 - 项目类别:
EXAMINATION OF ALLOSTERIC SITE OF SEROTONIN TRANSPORTER USING TRANSGENIC MICE
使用转基因小鼠检查血清素转运蛋白的变构位点
- 批准号:
7715783 - 财政年份:2008
- 资助金额:
$ 32.3万 - 项目类别:
STRUC DETERMINATION OF METAL-SUBSTITUTED & ALLOSTERIC SITE VARIANTS OF H INFLU
金属取代物的结构测定
- 批准号:
7721325 - 财政年份:2008
- 资助金额:
$ 32.3万 - 项目类别:
ALLOSTERIC SITE STRUCTURES OF CARDIOVASCULAR CHANNELS
心血管通道的变构位点结构
- 批准号:
7215384 - 财政年份:2007
- 资助金额:
$ 32.3万 - 项目类别:
EXAMINATION OF ALLOSTERIC SITE OF SEROTONIN TRANSPORTER USING TRANSGENIC MICE
使用转基因小鼠检查血清素转运蛋白的变构位点
- 批准号:
7562646 - 财政年份:2007
- 资助金额:
$ 32.3万 - 项目类别:














{{item.name}}会员




