Predicting protein flexibility and stability
预测蛋白质的灵活性和稳定性
基本信息
- 批准号:7185134
- 负责人:
- 金额:$ 37.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAlzheimer&aposs DiseaseAttentionBiochemistryBioinformaticsBiomedical ResearchBiophysicsCaliforniaCollaborationsComplement component C1sComputational BiologyComputer softwareConditionData SetDatabasesDevelopmentDiffusionDiseaseDisruptionElectrostaticsEntropyEnzymesEquilibriumEvolutionFigs - dietaryFinancial compensationFree EnergyGeneric DrugsGlassGoalsGrantGraphGray unit of radiation doseGrowthHeatingHomology ModelingHydration statusHydrogen BondingHydrophobic InteractionsIndividualIonic StrengthsJointsLarge-Scale SequencingLeadLigand BindingLiquid substanceLiteratureMeasuresMechanicsMediatingMethodologyMinorityModelingMolecularMotionMuscle RigidityNatureNumbersOnline SystemsOrthologous GeneOutcomePathway interactionsPharmacologyPhysical ChemistryPhysicsPliabilityProbabilityProcessProtein FamilyProteinsRangeReactionReproducibilityResearchResearch PersonnelResearch SupportS06 grantSchemeScienceScoreSiteSolutionsSolventsSpecific qualifier valueStructureStructure-Activity RelationshipSystemTechniquesTemperatureTestingThermodynamicsTimeTrainingUnderrepresented MinorityUniversitiesWorkaqueousbasecatalystcomparativecomputerized toolsconceptdesignenthalpyexperienceimprovedinsightmathematical algorithmmolecular recognitionnovelprofessorprogramsprotein foldingprotein functionprotein structure functionprototypesuccesstheoriesthree dimensional structuretooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): A grand challenge of biophysics is to understand protein folding, stability, flexibility, and function in terms of structure and solvent condition. A novel Distance Constraint Model (DCM) is employed to accurately predict protein stability in aqueous solution under specified thermodynamic conditions (i.e. temperature, pH, ionic strength, etc) from known three-dimensional structure. This project builds upon prior success of the PI in developing efficient rigidity-graph algorithms to identify flexible and rigid regions in proteins modeled as a fixed constraint topology, and development of the DCM. The DCM is based on the hypothesis that network rigidity is an underlying mechanism for enthalpy-entropy compensation, yielding a mathematically precise algorithm to account for non-additivity in free energy decompositions. A proof of concept, minimal DCM, will be extended in this project to include explictit modeling of essential entropy-compensation mechanisms that include (a) hydration, (b) hydrophobic interactions, (c) electrostatics interactions, with (d) a residue-specific parameterization. These extensions will allow prediction of protein stability in mixed solvent conditions, and bring the DCM closer to a fully transferable parameterization. However, parameter transferability is not a requirement of this proposed work, as the utility of our minimal DCM has been firmly established. The first outcome of this work will be the release of a fast computational tool that harmoniously quantifies stability and flexibility in practical computing times necessary for protien design applications. For example, local- details of protein flexibility are quantified to identify correlated atomic motions important for induced fit of ligand binding and allosteric conformational changes. Synergistic application of the DCM with protein family evolutionary descriptions will provide key insight into familial variability of Quantified Stability/Flexibility Relationships (QSFR). The second outcome will be a public accessible QSFR database providing users wide access to DCM results and analysis tools will give users a practical means to better understand protein function in realistic computing times needed for the post-geonomic era.
描述(申请人提供):生物物理学的一个重大挑战是从结构和溶剂条件方面了解蛋白质的折叠、稳定性、灵活性和功能。一种新的距离约束模型(DCM)被用来从已知的三维结构中准确地预测特定热力学条件(即温度、pH、离子强度等)下蛋白质在水溶液中的稳定性。这个项目建立在PI在开发有效的刚性图算法以识别被建模为固定约束拓扑的蛋白质中的柔性和刚性区域以及DCM的开发方面的先前成功的基础上。DCM基于这样的假设,即网络刚性是焓-熵补偿的基本机制,产生了一种数学上精确的算法来解释自由能分解中的非加性。概念证明,最小DCM,将在这个项目中扩展到包括基本的熵补偿机制的显式建模,其中包括(A)水化,(B)疏水相互作用,(C)静电相互作用,(D)特定残基的参数化。这些扩展将允许预测蛋白质在混合溶剂条件下的稳定性,并使DCM更接近完全可转移的参数化。然而,参数可转移性不是这项拟议工作的要求,因为我们的最小DCM的效用已经牢固地建立起来。这项工作的第一个结果将是发布一种快速计算工具,它协调地量化了保护设计应用程序所需的实际计算时间的稳定性和灵活性。例如,蛋白质灵活性的局部细节被量化,以确定对诱导配基结合和变构构象变化重要的相关原子运动。DCM与蛋白质家族进化描述的协同应用将为量化稳定性/弹性关系(QSFR)的家族变异性提供关键的洞察力。第二个成果将是一个公众可访问的QSFR数据库,为用户提供广泛的DCM结果和分析工具,将为用户提供一种实用的手段,在后地质时代所需的现实计算时代更好地理解蛋白质功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald JACOBS其他文献
Donald JACOBS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald JACOBS', 18)}}的其他基金
Supplement: New computer for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:用于计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽的新计算机
- 批准号:
10798727 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别:
Computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
通过计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽
- 批准号:
10439131 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别:
Supplement: Student support for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:学生支持通过计算设计肽来干扰 p53-MDM2 和 p53-sirtuin 相互作用
- 批准号:
10829740 - 财政年份:2022
- 资助金额:
$ 37.91万 - 项目类别:
Elucidating beta-lactamase functional mechanisms via evolutionary conservation
通过进化保守阐明β-内酰胺酶的功能机制
- 批准号:
8432993 - 财政年份:2013
- 资助金额:
$ 37.91万 - 项目类别:
REAL TIME PROTEIN DOMAIN AND FLEXIBILITY IDENTIFICATION
实时蛋白质结构域和灵活性识别
- 批准号:
2715292 - 财政年份:1998
- 资助金额:
$ 37.91万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.91万 - 项目类别:
Continuing Grant