The evolution of chromosome structure meiotic pairing and silencing of the heterologous sex chromosomes in the plant genus Silene

植物属植物染色体结构减数分裂配对的进化与异源性染色体的沉默

基本信息

  • 批准号:
    BB/E002765/2
  • 负责人:
  • 金额:
    $ 28.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Human individuals normally develop as either a male or a female and the genetic mechanism that determines the sex of an organism is based on sex chromosomes: Females have two X chromosomes, while males have one X and one Y chromosome, which is male-specific. During embryonic development the individual genes on the Y chromosome trigger a chain of events leading to the development of a male. Apart from the sex chromosomes, cells contain other chromosomes, called autosomes. Each chromosome is normally represented twice, for example, in the human there are 46 chromosomes, consisting of a pair of sex chromosomes and 22 pairs of autosomes. In the egg and sperm the chromosomes are represented once. In order to achieve this the meiotic pathway occurs, the chromosomes form pairs, which is relatively straightforward for the autosomes and XX in females. Things become more complicated when two different sex chromosomes, X and Y, have to pair in males. The cell has to ensure that a correct pairing is formed between the X and Y chromosomes and depends on pairing in a small region that is similar in both chromosomes, known as the pairing region. The mechanisms involved in these processes are studied to some extent in humans and the mouse, but no information is available for independently evolved plant sex chromosomes. Understanding how sex chromosomes have evolved independently in evolution and how they function in different organisms is of great biological interest. In this project we will study how plant sex chromosomes make sure the pairing occurs correctly and how the structure and function of plant sex chromosomes evolved. Plants often have male and female organs on the same individual. Species with separate male and female individuals are rare in plants and some of these species are known to contain sex chromosomes. The white campion, Silene latifolia has separate sexes (male and female plants) and has a sex chromosome system similar to mammals; females have two X chromosomes, while males contain X and Y chromosomes. The sex determination system in this species is relatively young and likely to have evolved 10-15 million years ago (MYA) compared to ~320 MYA in mammals. Sex chromosomes have evolved only in a few species of the genus Silene, allowing us to compare the structure and behaviour of chromosomes in species with and without sex chromosomes. This provides a unique opportunity to study evolutionary changes that have led to sex chromosome evolution. The two questions we want to understand are how have the sex chromosomes evolved in the campions, and how they negotiate meiosis successfully, given the X and Y chromosomes are largely different to each other and therefore have specific problems in pairing, synapsis and recombination. For this purpose we will search for DNA probes that hybridise specifically with S. latifolia sex chromosomes. The location of these probes on the sex chromosomes (and chromosomes homologous to sex chromosomes) in different species will be studied and compared using fluorescent in situ hybridisation, the method which allows to localise fluorescent-labelled DNA probes hybridised to chromosomes fixed to a glass slide. The pairing of sex chromosomes during cell devision (meiosis) will be studied using fluorescent-labelled antibodies, the proteins that specifically bind other proteins, in our case the proteins involved in chromosome pairing and recombination. Using these tools we will be able to observe the paired and unpaired regions of the sex chromosomes as fluorescing foci on chromosome spreads. The comparison of structure and meiotic behaviour of sex chromosomes in Silene on the one hand and mammals on the other will help to understand whether and to what extent meiotic processes and controls are conserved across all eukaryotes. A plant model such as the one provided by the Silene genus is very advantageous and likely to be useful for general principles in meiosis and therefore reproduction in humans.
人类个体通常发育为男性或女性,决定生物体性别的遗传机制基于性染色体:女性有两条X染色体,而男性有一条X和一条Y染色体,这是男性特有的。在胚胎发育过程中,Y染色体上的单个基因触发了一系列导致男性发育的事件。除了性染色体,细胞还含有其他染色体,称为常染色体。每个染色体通常代表两次,例如,在人类中有46条染色体,由一对性染色体和22对常染色体组成。在卵子和精子中,染色体只代表一次。为了实现这一点,减数分裂途径发生,染色体形成配对,这对于女性中的常染色体和XX来说相对简单。当两个不同的性染色体,X和Y,必须在男性中配对时,事情变得更加复杂。细胞必须确保在X和Y染色体之间形成正确的配对,并且取决于在两条染色体中相似的小区域中的配对,称为配对区域。这些过程中涉及的机制在人类和小鼠中进行了一定程度的研究,但没有关于独立进化的植物性染色体的信息。了解性染色体如何在进化过程中独立进化,以及它们在不同生物体中如何发挥作用,具有重大的生物学意义。在这个项目中,我们将研究植物性染色体如何确保配对正确发生,以及植物性染色体的结构和功能如何进化。植物通常在同一个体上有雄性和雌性器官。在植物中,雄性和雌性个体分开的物种是罕见的,其中一些物种已知含有性染色体。白色坎皮翁,宽叶蝇子草有单独的性别(雄性和雌性植物),并具有类似于哺乳动物的性染色体系统;雌性有两个X染色体,而雄性含有X和Y染色体。该物种的性别决定系统相对年轻,可能在1000万至1500万年前(MYA)进化,而哺乳动物的性别决定系统约为3.2亿年。性染色体仅在蝇子草属的少数物种中进化,这使我们能够比较具有和不具有性染色体的物种中染色体的结构和行为。这为研究导致性染色体进化的进化变化提供了一个独特的机会。我们想了解的两个问题是,性染色体是如何在campion中进化的,以及它们是如何成功地进行减数分裂的,因为X和Y染色体彼此之间存在很大的差异,因此在配对、联会和重组方面存在特定的问题。为此,我们将寻找与S.阔叶树性染色体这些探针在不同物种的性染色体(和性染色体同源染色体)上的位置将使用荧光原位杂交进行研究和比较,该方法允许将荧光标记的DNA探针与固定在载玻片上的染色体杂交。细胞分裂(减数分裂)期间性染色体的配对将使用荧光标记抗体进行研究,荧光标记抗体是特异性结合其他蛋白质的蛋白质,在我们的情况下,蛋白质参与染色体配对和重组。使用这些工具,我们将能够观察性染色体的配对和未配对区域作为染色体扩散上的荧光灶。比较Silene和哺乳动物的性染色体的结构和减数分裂行为将有助于了解减数分裂过程和控制是否以及在多大程度上在所有真核生物中是保守的。一个植物模型,如一个提供的Silene属是非常有利的,可能是有用的减数分裂的一般原则,因此在人类的生殖。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitry Filatov其他文献

Dmitry Filatov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmitry Filatov', 18)}}的其他基金

Evolution of dosage compensation on recently evolved sex chromosomes
最近进化的性染色体上剂量补偿的进化
  • 批准号:
    BB/P009808/1
  • 财政年份:
    2017
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
Genome evolution following transition to separate sexes
性别转变后的基因组进化
  • 批准号:
    BB/K016539/1
  • 财政年份:
    2013
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
Adaptive radiations of New World lupins revealed by transcriptome sequencing
转录组测序揭示新大陆羽扇豆的适应性辐射
  • 批准号:
    NE/K004352/1
  • 财政年份:
    2013
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
Rubisco evolution, photosynthesis and plant adaptation to climate change
Rubisco进化、光合作用和植物对气候变化的适应
  • 批准号:
    NE/H007741/1
  • 财政年份:
    2010
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
The genomic basis of adaptation and species divergence in Senecio
千里光适应和物种分化的基因组基础
  • 批准号:
    NE/G017646/1
  • 财政年份:
    2010
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
Genome-wide analysis of speciation and adaptation in closely related plant species
密切相关植物物种的物种形成和适应的全基因组分析
  • 批准号:
    NE/F018991/1
  • 财政年份:
    2008
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
Does gene flow between species play a role in island adaptive radiations?
物种之间的基因流动在岛屿适应性辐射中发挥作用吗?
  • 批准号:
    NE/E00489X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
Adaptive and purifying selection in island and mainland plant species
岛屿和大陆植物物种的适应性和净化选择
  • 批准号:
    BB/C512310/2
  • 财政年份:
    2007
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant
The evolution of chromosome structure meiotic pairing and silencing of the heterologous sex chromosomes in the plant genus Silene
植物属植物染色体结构减数分裂配对的进化与异源性染色体的沉默
  • 批准号:
    BB/E002765/1
  • 财政年份:
    2007
  • 资助金额:
    $ 28.48万
  • 项目类别:
    Research Grant

相似国自然基金

异染色质蛋白HP1与ATRX结合在有丝分裂期维护染色体稳定性的分子机制研究
  • 批准号:
    32000499
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
用一种新的方法研究Bub1调控有丝分裂的分子机制
  • 批准号:
    31970666
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
核酸酶LEM-3的生化性质与体内功能研究
  • 批准号:
    31900509
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
癌症和神经系统失调中的CENP-A泛素化的细胞器间信号通路
  • 批准号:
    31970665
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于CSSSLs的水稻粒形QTL qGS7-2的图位克隆和功能分析
  • 批准号:
    31101131
  • 批准年份:
    2011
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
中国人染色体19q13.2-3区域DNA修复等基因单核苷酸多态及其单体型与肺癌发生风险研究
  • 批准号:
    30571016
  • 批准年份:
    2005
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
中国棉铃虫核多角体病毒基因组库和分子进化
  • 批准号:
    30540076
  • 批准年份:
    2005
  • 资助金额:
    8.0 万元
  • 项目类别:
    专项基金项目
染色体端末端单链DNA的形成及其特殊结构与功能
  • 批准号:
    30270314
  • 批准年份:
    2002
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
  • 批准号:
    10677192
  • 财政年份:
    2023
  • 资助金额:
    $ 28.48万
  • 项目类别:
Functional Analysis of the Anti-Müllerian Hormone as a Convergently Acquired Master Sex Determination Gene
抗苗勒氏管激素作为趋同获得性主性别决定基因的功能分析
  • 批准号:
    10659852
  • 财政年份:
    2023
  • 资助金额:
    $ 28.48万
  • 项目类别:
Chromosome evolution and rapid Y chromosome degeneration
染色体进化和 Y 染色体快速退化
  • 批准号:
    10713635
  • 财政年份:
    2023
  • 资助金额:
    $ 28.48万
  • 项目类别:
Host DNA repair pathways in human cytomegalovirus replication
人类巨细胞病毒复制中的宿主DNA修复途径
  • 批准号:
    10715597
  • 财政年份:
    2023
  • 资助金额:
    $ 28.48万
  • 项目类别:
Molecular mechanisms of nucleic acid recognition and maintenance in meiosis and innate immunity
减数分裂和先天免疫中核酸识别和维持的分子机制
  • 批准号:
    10542438
  • 财政年份:
    2022
  • 资助金额:
    $ 28.48万
  • 项目类别:
Disruption of three-dimensional genome organization as a noncoding mechanism of disease in human developmental disorders
三维基因组组织的破坏作为人类发育障碍疾病的非编码机制
  • 批准号:
    10705583
  • 财政年份:
    2022
  • 资助金额:
    $ 28.48万
  • 项目类别:
Molecular mechanisms of nucleic acid recognition and maintenance in meiosis and innate immunity
减数分裂和先天免疫中核酸识别和维持的分子机制
  • 批准号:
    10795245
  • 财政年份:
    2022
  • 资助金额:
    $ 28.48万
  • 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
  • 批准号:
    10661533
  • 财政年份:
    2022
  • 资助金额:
    $ 28.48万
  • 项目类别:
Structure and Pharmacologic Modulation of the Mitotic Chromosome's Central Axis
有丝分裂染色体中轴的结构和药理学调节
  • 批准号:
    10704101
  • 财政年份:
    2022
  • 资助金额:
    $ 28.48万
  • 项目类别:
Immune control and genomic instability at micronuclei
微核的免疫控制和基因组不稳定性
  • 批准号:
    10365554
  • 财政年份:
    2022
  • 资助金额:
    $ 28.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了