Novel Algorithms for Crystallographic Computing

晶体学计算的新算法

基本信息

项目摘要

DESCRIPTION (provided by applicant): Since the mid nineteen hundreds, analysis of X-ray diffraction data of crystals has been used extensively for the determination of molecular structure and properties. While the method is employed almost on a routine basis worldwide, it is often a major challenge to identify the three-dimensional structure that best fits the diffraction data. A key obstacle, in particular, is the identification of the phases of the diffracted rays from measurements of intensities alone. This problem is known as the "phase problem" in crystallography and its solution represents a major obstacle towards advancing the frontiers of macromolecular crystallography and structural biology. The primary goal of this project is the development of a systematic methodology for resolving the phase problem in crystallographic computing. Towards this goal, we plan to: (a) develop novel mathematical models for determining three-dimensional crystal structures from single crystal X-ray diffraction measurements; (b) devise mathematical optimization algorithms to solve the above models in a reliable and efficient way, thus increasing the size of tractable structures; (c) develop and make available to the research community a computational system implementing the above models and algorithms; and (d) apply the developed methodology to determine the three-dimensional structures of proteins and other important biological macromolecules. The project will build on a novel algorithm recently pioneered by the Principal Investigator to solve a model that has been demonstrated by the collaborating team to be capable of unraveling structures of biomolecules. The broader impacts of the project include mentoring of graduate students and postdoctoral trainees, integration of research results in a Bioinformatics course, and wide dissemination through on-line software implementing the results of this project. The proposed work promises to lay the foundations of a new generation of crystallographic computing systems that will reveal structures important in the understanding of life, materials science, and drug design. The long term impact to society could be immense as the project could lead to methodology capable of deciphering the secrets of life and playing a pivotal role in the development of new drugs.
描述(申请人提供):自19世纪中期以来,晶体的X射线衍射数据分析已被广泛用于确定分子结构和性质。虽然这种方法在世界范围内几乎是例行公事,但识别最符合衍射数据的三维结构往往是一个重大挑战。特别是,一个关键的障碍是仅从强度测量来识别衍射光的相位。这一问题被称为结晶学中的“相问题”,其解决方案是推进大分子结晶学和结构生物学前沿的主要障碍。 这个项目的主要目标是开发一种系统的方法来解决晶体计算中的相问题。为此,我们计划:(A)开发新的数学模型,用于根据单晶X射线衍射测量确定三维晶体结构;(B)设计数学优化算法,以可靠和有效的方式求解上述模型,从而增加易处理结构的尺寸;(C)开发实现上述模型和算法的计算系统,并向研究界提供执行上述模型和算法的计算系统;以及(D)应用所开发的方法来确定蛋白质和其他重要生物大分子的三维结构。该项目将建立在首席调查员最近开创的一种新算法的基础上,以解决合作团队已经证明能够解开生物分子结构的模型。 该项目的更广泛影响包括指导研究生和博士后受训人员,将研究成果纳入生物信息学课程,以及通过实施该项目成果的在线软件广泛传播。拟议的工作有望为新一代晶体计算系统奠定基础,这些系统将揭示在理解生命、材料科学和药物设计中重要的结构。对社会的长期影响可能是巨大的,因为该项目可能导致能够破译生命秘密的方法,并在新药开发中发挥关键作用。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SnB version 2.3: triplet sieve phasing for centrosymmetric structures.
SnB 版本 2.3:中心对称结构的三重筛定相。
  • DOI:
    10.1107/s0021889808007966
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Xu,Hongliang;Smith,AlexanderB;Sahinidis,NikolaosV;Weeks,CharlesM
  • 通讯作者:
    Weeks,CharlesM
An integer minimal principle and triplet sieve method for phasing centrosymmetric structures.
用于定相中心对称结构的整数极小原理和三重态筛法。
Optimization techniques in molecular structure and function elucidation.
  • DOI:
    10.1016/j.compchemeng.2009.06.006
  • 发表时间:
    2009-12
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Sahinidis NV
  • 通讯作者:
    Sahinidis NV
GPU computing with Kaczmarz's and other iterative algorithms for linear systems.
  • DOI:
    10.1016/j.parco.2009.12.003
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Elble JM;Sahinidis NV;Vouzis P
  • 通讯作者:
    Vouzis P
Enhancing MAD F(A) data for substructure determination.
增强用于子结构确定的 MAD F(A) 数据。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolaos Sahinidis其他文献

Nikolaos Sahinidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolaos Sahinidis', 18)}}的其他基金

Novel Algorithms for Crystallographic Computing
晶体学计算的新算法
  • 批准号:
    7211483
  • 财政年份:
    2004
  • 资助金额:
    $ 40.21万
  • 项目类别:
Novel Algorithms for Crystallographic Computing
晶体学计算的新算法
  • 批准号:
    6828715
  • 财政年份:
    2004
  • 资助金额:
    $ 40.21万
  • 项目类别:
Novel Algorithms for Crystallographic Computing
晶体学计算的新算法
  • 批准号:
    6879498
  • 财政年份:
    2004
  • 资助金额:
    $ 40.21万
  • 项目类别:
Novel Algorithms for Crystallographic Computing
晶体学计算的新算法
  • 批准号:
    7049376
  • 财政年份:
    2004
  • 资助金额:
    $ 40.21万
  • 项目类别:

相似海外基金

Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
  • 批准号:
    BB/X019802/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318830
  • 财政年份:
    2023
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318831
  • 财政年份:
    2023
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
  • 批准号:
    484699
  • 财政年份:
    2022
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
  • 批准号:
    1949968
  • 财政年份:
    2020
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
  • 批准号:
    1559829
  • 财政年份:
    2016
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
  • 批准号:
    416848-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 40.21万
  • 项目类别:
    University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
  • 批准号:
    1062565
  • 财政年份:
    2011
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
  • 批准号:
    261818-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 40.21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了