Phage display selection of small molecule switchable transcription factors
小分子可切换转录因子的噬菌体展示选择
基本信息
- 批准号:BB/E013503/1
- 负责人:
- 金额:$ 37.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The genetic information of organisms within DNA molecules instructs cells how to construct proteins which are key the structural building blocks and molecular machines of life. Many different proteins are present in a cell, although their amounts vary according to the stage of the lifecycle of the cell and in response to signals from its surroundings. Unravelling the roles of proteins in the processes that convert general purpose stem cells into specialized tissues allowing the development of multicellular organisms is an example of the type of problem that would benefit enormously from an ability to control the quantities of specific proteins present at a particular moment in time. Here we propose a means for controlling production of a protein by addition of a small molecule of our choice. Protein synthesis begins with the binding of specialized proteins known as transcription factors to regions of DNA adjacent to locations coding for proteins themselves. Blocking the transcription factor from binding DNA prevents the synthesis of the protein(s) coded by the genes that are targeted by that transcription factor. Our hypothesis is that by designing transcription factors that change shape when they bind a specific small molecule, we can flip them from an inactive form that is incapable of binding DNA to an active form that binds DNA and switches on protein synthesis. We will address the challenge of designing a switching transcription factor that responds to a small molecule chosen to display favourable properties in animals including lack of toxicity and good oral uptake. For this purpose we have chosen an antihistamine drug that interacts specifically with a protein involved in the inflammatory response and so exhibits few side effects. As it is difficult to design proteins from scratch, we will create genes encoding a large number of variants of a natural transcription factor that have been chosen to create a cavity in the transcription factor into which our small molecule could bind. Proteins rely on their interiors to maintain a precise shape, and in the absence of the small molecule we predict that the cavity will destabilize the shape of the transcription factor so that it no longer binds DNA. We will place our transcription factor genes into a virus that infects bacteria, so that bacteria produce virus particles which display the transcription factor on their exterior. Using DNA as bait, we will 'fish out' virus particles that bind to the DNA only when the small molecule is present, discarding the remaining virus. Although we may isolate only a very small number of virus particles, these can be amplified by replication in infected bacteria. By repeating the process of selection and amplification a number of times the majority of virus will display transcription factors that are able to switch their DNA binding in response to the small molecule. We will analyse how tightly these transcription factors bind DNA in the presence and absence of the small molecule, and determine information about their three dimensional structures to verify our hypothesis on their mode of action. Our final objective will be to place a new transcription factor into mammalian cells to test its ability to switch on a gene of interest in response to the small molecule. This work will be of interest to researchers involved in the structure and design of proteins, and how proteins interact with small molecules and DNA. There will be direct applications for the study of the roles of genes, by enabling researchers to selectively switch on proteins in cells and then monitor the outcome. This will yield insight into processes such as growth, cell differentiation, ageing and disease progression. Better understanding of these processes, the ways in which they can malfunction, and how to control them, will lead to an increase in the quality of life through enhanced avoidance of ill health in humans and improvements to agriculture and food production.
DNA分子内生物体的遗传信息指导细胞如何构建蛋白质,而蛋白质是生命结构的关键组成部分和分子机器。细胞中存在许多不同的蛋白质,尽管它们的数量根据细胞生命周期的阶段和对周围环境信号的反应而变化。揭示蛋白质在将通用干细胞转化为允许多细胞生物发育的特化组织的过程中的作用,是这类问题的一个例子,它将从控制特定时刻存在的特定蛋白质的数量的能力中受益匪浅。在这里,我们提出了一种通过添加我们选择的小分子来控制蛋白质生产的方法。蛋白质合成开始于被称为转录因子的特殊蛋白质与邻近蛋白质编码位置的DNA区域的结合。阻断转录因子与DNA的结合可以阻止转录因子靶向基因编码的蛋白质的合成。我们的假设是,通过设计转录因子,当它们结合特定的小分子时改变形状,我们可以将它们从无法结合DNA的非活性形式转变为结合DNA并开启蛋白质合成的活性形式。我们将解决设计一种开关转录因子的挑战,这种转录因子对选择的小分子有反应,在动物中显示出有利的特性,包括缺乏毒性和良好的口服吸收。为此,我们选择了一种抗组胺药物,它与炎症反应中涉及的蛋白质特异性相互作用,因此副作用很少。由于从零开始设计蛋白质是很困难的,我们将创建编码一种自然转录因子的大量变体的基因,这些基因被选中在转录因子中创建一个空腔,我们的小分子可以与之结合。蛋白质依靠它们的内部来保持精确的形状,在没有小分子的情况下,我们预测空腔将破坏转录因子的形状,使其不再与DNA结合。我们将转录因子基因放入感染细菌的病毒中,这样细菌就会产生病毒颗粒,病毒颗粒的外部会显示转录因子。以DNA为诱饵,我们将“捞出”只有在小分子存在时才与DNA结合的病毒颗粒,丢弃剩余的病毒。虽然我们只能分离出非常少量的病毒颗粒,但这些颗粒可以在被感染的细菌中通过复制而扩增。通过多次重复选择和扩增过程,大多数病毒将显示转录因子,这些转录因子能够根据小分子改变其DNA结合。我们将分析这些转录因子在小分子存在和不存在的情况下与DNA结合的紧密程度,并确定它们的三维结构信息,以验证我们关于它们的作用模式的假设。我们的最终目标是将一种新的转录因子放入哺乳动物细胞中,以测试其在响应小分子时开启感兴趣基因的能力。这项工作将引起研究蛋白质结构和设计以及蛋白质如何与小分子和DNA相互作用的研究人员的兴趣。通过使研究人员能够选择性地打开细胞中的蛋白质,然后监测结果,这将直接应用于基因作用的研究。这将对生长、细胞分化、衰老和疾病进展等过程产生深入的了解。更好地了解这些过程、它们可能发生故障的方式以及如何控制它们,将通过加强避免人类健康不良和改善农业和粮食生产来提高生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Redman其他文献
Manufacturing trials of PFCs with low thermal conductivity features for limiters
- DOI:
10.1016/j.fusengdes.2024.114577 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
James Roberts;Ross MacDonald;Alex Russell;James Redman;Paul Brooker;Ian Bunce;Ethan Flynn - 通讯作者:
Ethan Flynn
James Redman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Redman', 18)}}的其他基金
Software tools for structure elucidation of synthetic and natural product peptide mixtures by LC-IM-MS
用于通过 LC-IM-MS 解析合成和天然产物肽混合物结构的软件工具
- 批准号:
BB/M019993/1 - 财政年份:2015
- 资助金额:
$ 37.9万 - 项目类别:
Research Grant
相似国自然基金
Pi-可除O-模的结构
- 批准号:11701272
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
对虾白斑综合症病毒(WSSV)感染相关基因及其细胞受体的筛选和鉴定
- 批准号:30700618
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
蛋白质组学指纹图谱技术差异蛋白放射性核素肿瘤显像
- 批准号:30570523
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
phage display联合基因转染技术对Bcl-2蛋白质结构和功能的研究
- 批准号:30471999
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
噬菌体展示基因工程人源抗体肿瘤放射免疫显像
- 批准号:30370422
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Kidney Transplantation from Donors with HIV: Impact on Rejection and Long-term Outcomes
艾滋病毒捐献者的肾移植:对排斥和长期结果的影响
- 批准号:
10704333 - 财政年份:2023
- 资助金额:
$ 37.9万 - 项目类别:
Identifying the targets of protective immunity to severe falciparum malaria
确定严重恶性疟疾的保护性免疫目标
- 批准号:
10893666 - 财政年份:2023
- 资助金额:
$ 37.9万 - 项目类别:
Development of cDNA display platform for selection of enzymes in enzyme engineering
酶工程中酶筛选用cDNA展示平台的开发
- 批准号:
22K14828 - 财政年份:2022
- 资助金额:
$ 37.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enhancing shared decision-making to prompt and guide individualized care for people with Alzheimer's Disease and Diabetes
加强共同决策,以促进和指导对阿尔茨海默病和糖尿病患者的个性化护理
- 批准号:
10429517 - 财政年份:2022
- 资助金额:
$ 37.9万 - 项目类别:
Enhancing shared decision-making to prompt and guide individualized care for people with Alzheimer's Disease and Diabetes
加强共同决策,以促进和指导对阿尔茨海默病和糖尿病患者的个性化护理
- 批准号:
10661106 - 财政年份:2022
- 资助金额:
$ 37.9万 - 项目类别:
COVID19: Anti-SARS-CoV-2 Antibodies and Infection Severity
COVID19:抗 SARS-CoV-2 抗体和感染严重程度
- 批准号:
10152299 - 财政年份:2021
- 资助金额:
$ 37.9万 - 项目类别:
Direct chemical control of the hematopoietic master transcription factor PU.1
造血主转录因子 PU.1 的直接化学控制
- 批准号:
10540346 - 财政年份:2021
- 资助金额:
$ 37.9万 - 项目类别:
COVID19: Anti-SARS-CoV-2 Antibodies and Infection Severity
COVID19:抗 SARS-CoV-2 抗体和感染严重程度
- 批准号:
10371080 - 财政年份:2021
- 资助金额:
$ 37.9万 - 项目类别:
Direct chemical control of the hematopoietic master transcription factor PU.1
造血主转录因子 PU.1 的直接化学控制
- 批准号:
10322390 - 财政年份:2021
- 资助金额:
$ 37.9万 - 项目类别:
Novel nanobodies to prevent and treat SARS-CoV-2 and other pathogenic human coronaviruses
用于预防和治疗 SARS-CoV-2 和其他致病性人类冠状病毒的新型纳米抗体
- 批准号:
10411118 - 财政年份:2020
- 资助金额:
$ 37.9万 - 项目类别: