A Multiscale Approach to Genes Growth and Geometry

基因生长和几何形状的多尺度方法

基本信息

  • 批准号:
    BB/F005997/1
  • 负责人:
  • 金额:
    $ 241.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Many complex systems, such as biological organisms, the internet or the economy, involve integrated parallel processes operating at many different scales. Organisms for example, exhibit massively parallel organisation, with units interacting at levels ranging from molecules to ecosystems. A key challenge is to understand how such parallel multiscale interactions work. In the case of biological systems, a major focus in recent years has been on the molecular to cellular scale. However, advances in developmental biology and imaging, in particular the ability to isolate and study genes affecting the development of organisms in 3D, raises the possibility of a systems approach at a larger scale, from the subcellular to organism levels. The key link between these scales is growth, as it is through growth that molecular changes lead to modifications in cell size, shape and division, eventually leading to production of multicellular tissues and organisms. Growing structures can be divided into those that reach a steady state, such as the growing tips of plants, and those in which shape continually changes, such as developing insect wings or plant leaves. The latter cases present the particular challenge of capturing multiple interactions as a structure undergoes changes in shape and size over several orders of magnitude. Studying this problem requires growth, shape, patterning and gene action to be analysed and integrated at many levels. Moreover formal languages and modelling frameworks need to be developed to allow the dynamics and interactions to be captured. By pursuing these approaches at many scales in parallel, key experimental and conceptual links should emerge that would not be evident from studying each scale in isolation. Recent advances in both experimental and computational science now make this feasible. The aim of this project is to provide a platform for such an approach by studying the mechanism by which leaves acquire their characteristic shapes and patterns. The project will involve a combination experimental analysis, image-processing, computer modelling and integration at four different scales. (1) At the subcellular level, we will track the way components of the cytoskeleton are synthesised and change in parallel over time in 3D. Models will then be constructed to account for this behaviour and tested through further rounds of experimentation. These models will also be related to cellular properties. (2) At the cellular level, the pattern of cell growth and division will be determined for multiple regions of a growing leaf by live 3D imaging. Computer languages will be developed for modelling this behaviour based on local interactions between growing cells. Models will be tested by modifying gene activity at particular places and times during leaf development. These models will also be related to properties at the whole organ level. (3) At the organ level, the growth of the leaf in 3D will be tracked using a variety of imaging methods. A modelling framework will be developed that allows the observed cellular and tissue properties to be integrated with gene action. Models will be tested by analysing how experimental manipulation of local gene activity modifies growth. This will be aided by developing a system for measuring the 3D shapes of a diverse collection of mutants that affect leaf shape at various stages of development. (4) At the whole plant level, leaf growth will be incorporated into a virtual plant in which local interactions between modules account for the dynamics of growth and architecture. By interfacing the various models, an integrated multiscale view of plant development should emerge. The project will also train a new cohort of scientists familiar with disciplines ranging from molecular genetics, developmental biology, bio-imaging, image-processing to computer modelling.
许多复杂的系统,如生物有机体、互联网或经济,涉及在许多不同规模上运行的综合并行过程。例如,有机体表现出大规模的平行组织,其单位在从分子到生态系统的各个层面上相互作用。一个关键的挑战是理解这种平行的多尺度相互作用是如何工作的。就生物系统而言,近年来的一个主要焦点是分子到细胞的尺度。然而,发育生物学和成像的进步,特别是在3D中分离和研究影响生物体发育的基因的能力,提高了从亚细胞到生物体水平的更大规模系统方法的可能性。这些尺度之间的关键联系是生长,因为正是通过生长,分子变化导致细胞大小、形状和分裂的改变,最终导致多细胞组织和生物体的产生。生长结构可分为达到稳定状态的结构,如植物的生长尖端,和形状不断变化的结构,如发育中的昆虫翅膀或植物叶子。在后一种情况下,当结构在形状和大小上经历几个数量级的变化时,捕获多重相互作用是一个特别的挑战。研究这个问题需要在许多层面上对生长、形状、模式和基因作用进行分析和整合。此外,需要开发正式语言和建模框架,以允许捕获动态和交互。通过在许多尺度上并行地追求这些方法,应该出现关键的实验和概念联系,而单独研究每个尺度是不明显的。实验和计算科学的最新进展使这一设想成为可能。该项目的目的是通过研究树叶获得其特征形状和图案的机制,为这种方法提供一个平台。该项目将包括实验分析、图像处理、计算机建模和四个不同尺度的集成。(1)在亚细胞水平上,我们将在3D中跟踪细胞骨架组成部分的合成和随时间平行变化的方式。然后将构建模型来解释这种行为,并通过进一步的实验进行测试。这些模型也将与细胞特性相关。(2)在细胞水平上,通过实时三维成像来确定生长叶片多个区域的细胞生长和分裂模式。将开发计算机语言,根据生长细胞之间的局部相互作用来模拟这种行为。模型将通过在叶片发育的特定地点和时间修改基因活性来测试。这些模型也将与整个器官水平的特性有关。(3)在器官水平,将使用多种成像方法在3D中跟踪叶片的生长。将开发一个建模框架,允许观察到的细胞和组织特性与基因作用相结合。模型将通过分析局部基因活性的实验操作如何改变生长来测试。这将有助于开发一个系统,用于测量在不同发育阶段影响叶片形状的多种突变体的3D形状。(4)在整个植物层面,叶片生长将被纳入一个虚拟植物中,其中模块之间的局部相互作用解释了生长和结构的动态。通过将各种模型结合起来,一个综合的植物发育的多尺度视图应该出现。该项目还将培养一批熟悉从分子遗传学、发育生物学、生物成像、图像处理到计算机建模等学科的新科学家。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative control of organ shape by combinatorial gene activity.
  • DOI:
    10.1371/journal.pbio.1000538
  • 发表时间:
    2010-11-09
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Cui ML;Copsey L;Green AA;Bangham JA;Coen E
  • 通讯作者:
    Coen E
Genetic control of organ shape and tissue polarity.
  • DOI:
    10.1371/journal.pbio.1000537
  • 发表时间:
    2010-11-09
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Green AA;Kennaway JR;Hanna AI;Bangham JA;Coen E
  • 通讯作者:
    Coen E
Spatiotemporal coordination of cell division and growth during organ morphogenesis.
  • DOI:
    10.1371/journal.pbio.2005952
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Fox S;Southam P;Pantin F;Kennaway R;Robinson S;Castorina G;Sánchez-Corrales YE;Sablowski R;Chan J;Grieneisen V;Marée AFM;Bangham JA;Coen E
  • 通讯作者:
    Coen E
Intrinsic Cell Polarity Coupled to Growth Axis Formation in Tobacco BY-2 Cells.
  • DOI:
    10.1016/j.cub.2020.09.036
  • 发表时间:
    2020-12-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chan J;Mansfield C;Clouet F;Dorussen D;Coen E
  • 通讯作者:
    Coen E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enrico Coen其他文献

The storytelling arms race: origin of human intelligence and the scientific mind
故事讲述的军备竞赛:人类智力和科学思维的起源
  • DOI:
    10.1038/s41437-019-0214-2
  • 发表时间:
    2019-06-12
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Enrico Coen
  • 通讯作者:
    Enrico Coen
Developmental timing in plants
植物发育的时间安排
  • DOI:
    10.1038/s41467-024-46941-1
  • 发表时间:
    2024-03-27
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Enrico Coen;Przemyslaw Prusinkiewicz
  • 通讯作者:
    Przemyslaw Prusinkiewicz
Homo geneticus
智人
  • DOI:
    10.1038/s41437-019-0215-1
  • 发表时间:
    2019-06-12
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Enrico Coen
  • 通讯作者:
    Enrico Coen
03-P090 Visualising plant growth and shape in 3D using optical projection tomography
  • DOI:
    10.1016/j.mod.2009.06.143
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Karen Lee;Johann Strasser;Jerome Avondo;Paul Southam;Andrew Bangham;Enrico Coen
  • 通讯作者:
    Enrico Coen
Springcleaning ribosomal DNA: a model for multigene evolution?
春季大扫除核糖体 DNA:多基因进化的模型?
  • DOI:
    10.1038/290731a0
  • 发表时间:
    1981-04-30
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Gabriel Dover;Enrico Coen
  • 通讯作者:
    Enrico Coen

Enrico Coen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Enrico Coen', 18)}}的其他基金

Generation of reiterative growth patterns in plants
植物重复生长模式的产生
  • 批准号:
    BB/W007924/1
  • 财政年份:
    2022
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
Evolution of Gene Regulation through small RNA-mediated neofunctionalisation.
通过小 RNA 介导的新功能化进行基因调控的进化。
  • 批准号:
    BB/S009256/1
  • 财政年份:
    2019
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
Bilateral NSF/BIO-BBSRC: Unravelling the Grass Leaf
双边 NSF/BIO-BBSRC:揭开草叶的面纱
  • 批准号:
    BB/M023117/1
  • 财政年份:
    2015
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
Organising Tissue Cell Polarity and Growth in Plants
组织组织细胞极性和植物生长
  • 批准号:
    BB/L008920/1
  • 财政年份:
    2014
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
India Partnership: Studying diverse growth dynamics in leaves
印度伙伴关系:研究叶子的多样化生长动态
  • 批准号:
    BB/J020613/1
  • 财政年份:
    2012
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
Evolutionary Dynamics Underlying Species Diversification
物种多样化背后的进化动力学
  • 批准号:
    BB/G009325/1
  • 财政年份:
    2009
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
Comparative and Functional Analysis of a Genetic Pathway Controlling Floral Asymmetry
控制花不对称的遗传途径的比较和功能分析
  • 批准号:
    BB/D017742/1
  • 财政年份:
    2006
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

GREAT: Genome Refactoring and Engineering Approach to study non-coding genes driving Translation
伟大:研究驱动翻译的非编码基因的基因组重构和工程方法
  • 批准号:
    EP/Y024753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
PAGE-G: Precision Approach combining Genes and Environment in Glaucoma
PAGE-G:青光眼基因与环境相结合的精准方法
  • 批准号:
    10797646
  • 财政年份:
    2023
  • 资助金额:
    $ 241.45万
  • 项目类别:
Development of a technical strategy for the source control of antibiotic resistant bacteria and antibiotic resistance genes based on one-health approach
基于单一健康方法制定抗生素耐药菌和抗生素耐药基因源头控制技术策略
  • 批准号:
    23H00536
  • 财政年份:
    2023
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
An integrative transethnic approach to identify novel functional genes in Parkinson's disease using in silico and in vivo experiments
使用计算机和体内实验识别帕金森病新功能基因的综合跨种族方法
  • 批准号:
    MR/X011070/1
  • 财政年份:
    2023
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Research Grant
MRC TS Award: Genes and Environment in Diabetes Mellitus: A multi-species approach
MRC TS 奖:糖尿病的基因与环境:多物种方法
  • 批准号:
    MR/X023559/1
  • 财政年份:
    2023
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Fellowship
Analysis to approach the mechanism for generating individual differences found in craniofacial morphology ~identification of the susceptible polymorphisms and genes~
解析颅面部形态个体差异的产生机制~易受影响的多态性和基因的鉴定~
  • 批准号:
    22K06255
  • 财政年份:
    2022
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From Pain Resilience Genes Toward Therapeutic, Non-Opiate Modulation: An iPSC-Based Approach
从疼痛恢复基因到治疗性非阿片类药物调节:基于 iPSC 的方法
  • 批准号:
    10655583
  • 财政年份:
    2022
  • 资助金额:
    $ 241.45万
  • 项目类别:
A machine learning approach to automatic design of genes, proteins and chemical compounds
自动设计基因、蛋白质和化合物的机器学习方法
  • 批准号:
    22K19834
  • 财政年份:
    2022
  • 资助金额:
    $ 241.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
F31 Childcare Supplement: Optimization of a massively parallel genome editing approach to link regulatory elements to their target genes during mouse germ layer formation
F31 儿童保育补充剂:优化大规模并行基因组编辑方法,在小鼠胚层形成过程中将调控元件与其目标基因连接起来
  • 批准号:
    10715088
  • 财政年份:
    2022
  • 资助金额:
    $ 241.45万
  • 项目类别:
From Pain Resilience Genes Toward Therapeutic, Non-Opiate Modulation: An iPSC-Based Approach
从疼痛恢复基因到治疗性非阿片类药物调节:基于 iPSC 的方法
  • 批准号:
    10482496
  • 财政年份:
    2022
  • 资助金额:
    $ 241.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了