Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
基本信息
- 批准号:7512485
- 负责人:
- 金额:$ 16.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAlgorithmsAppendixArtsAthleticAutomobile DrivingBehaviorBiologicalBiomechanicsBrainBudgetsCalibrationClinicalCollaborationsCollectionCompatibleComplexComputer softwareComputing MethodologiesDataData AnalysesDetectionDevelopmentDevicesDocumentationEatingElectric StimulationElectromagneticsEnsureEnvironmentEquilibriumExtensible Markup LanguageFeedbackFundingGenerationsGoalsGrantHourHumanHuman bodyImageryIndustryJointsLawsLeftLibrariesLimb structureLocationMeasurementMethodologyMethodsModalityModelingMotionMotorMovementMuscleNumbersOccupational SafetyOperative Surgical ProceduresOpticsOutputPerformancePlacementPositioning AttributeProductionProductivityPublishingPurposeReconstructive Surgical ProceduresRehabilitation therapyRelianceResearchResearch PersonnelRunningSensory ReceptorsSignal TransductionSimulateSkeletal systemSkeletonSoftware ToolsSpecific qualifier valueStandards of Weights and MeasuresStudentsSuggestionSystemTestingTimeTranslatingTreesUnited States National Institutes of HealthVariantWorkWritinganimationbaseclinical applicationcomputer human interactiondata modelingdata structuredesignengineering designexperiencegraphical user interfaceinterestkinematicsmotor controlneural prosthesisneuroregulationrelating to nervous systemresearch and developmentsensorsimulationsizesoft tissuesoftware developmentsoundtoolusabilityvirtual
项目摘要
DESCRIPTION (provided by applicant): We propose to develop a toolbox for estimation, simulation and control of multi-joint movements. Our immediate goal is to facilitate research in Motor Control, by providing access to advanced computational methods and making such methods an integral part of the hypothesis generation-and-testing cycle. The estimation component of the toolbox will enable researchers to accurately compute multi-joint movement trajectories as well as limb sizes from motion capture data, without spending hours to place markers at precise locations and redesign setups to ensure that every marker is always visible. The control component will make it possible to formulate mathematically-sound hypotheses about the control strategies used by the brain, and automatically synthesize detailed control laws corresponding to the user's hypotheses. These control laws will then be applied to realistic musculo-skeletal models, using the simulation component, and the predicted behavior will be compared to experimental data in terms of kinematics, contact forces and EMGs. In case of a mismatch the toolbox will be able to netune any free parameters of the controller, and also search the library of candidate control strategies and identify the one which best agrees with the data. Our longer-term goal is to assist clinicians and engineers designing new treatments such as reconstructive surgery and functional electric stimulation. Testing candidate control mechanisms on simulated musculo-skeletal dynamics can greatly reduce the undesirable trial-and-error iterations. Customizations necessary for clinical use are left outside the scope of this project, however they will be possible once the core functionality is developed in a system with open design. The toolbox will be written in Matlab, with some C++ components, and will be freely available for academic, research and non-prot purposes. Project narrative We propose to develop a toolbox for estimation, simulation and control of multi-joint movement. Our immediate goal is to facilitate research in the eld of Motor Control by providing access to advanced computational methods presently beyond the reach of many investigators. While tools for simulating musculo-skeletal dynamics already exist, simulation alone is rarely suffcient to advance our understanding of motor function. Here we will combine simulation with automatic controllers capable of driving realistic musculo-skeletal models, and provide tools for estimating multi-joint movements from motion capture data. Our longer-term goal is to assist clinicians and engineers designing new treatments such as reconstructive surgery and functional electric stimulation.
描述(申请人提供):我们建议开发一个工具箱,用于估计、模拟和控制多关节运动。我们的直接目标是通过提供对先进计算方法的访问,并使这些方法成为假设生成和测试周期中不可或缺的一部分,来促进电机控制的研究。该工具箱的估计组件将使研究人员能够根据运动捕捉数据准确计算多关节运动轨迹以及肢体大小,而无需花费数小时在精确位置放置标记并重新设计设置,以确保每个标记始终可见。控制部件将使其有可能就大脑使用的控制策略制定数学上合理的假设,并自动合成与用户假设相对应的详细控制规律。然后,这些控制律将使用仿真组件应用于真实的肌肉骨骼模型,并将预测的行为与实验数据在运动学、接触力和肌电方面进行比较。在不匹配的情况下,工具箱将能够联网控制器的任何自由参数,还可以搜索候选控制策略库并识别最符合数据的控制策略库。我们的长期目标是帮助临床医生和工程师设计新的治疗方法,如重建手术和功能性电刺激。在模拟肌肉骨骼动力学上测试候选控制机制可以极大地减少不必要的试错迭代。临床使用所需的定制不在本项目的范围之内,但一旦在开放式设计的系统中开发了核心功能,这些定制就会成为可能。该工具箱将用MatLab编写,带有一些C++组件,可以免费用于学术、研究和非PROT目的。项目简介我们建议开发一个工具箱,用于估计、模拟和控制多关节运动。我们的直接目标是通过提供目前许多研究人员无法获得的先进计算方法来促进运动控制领域的研究。虽然模拟肌肉骨骼动力学的工具已经存在,但仅靠模拟很少足以促进我们对运动功能的理解。在这里,我们将结合模拟和自动控制器,能够驱动逼真的肌肉骨骼模型,并提供从运动捕捉数据估计多关节运动的工具。我们的长期目标是帮助临床医生和工程师设计新的治疗方法,如重建手术和功能性电刺激。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuel Todorov其他文献
Emanuel Todorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuel Todorov', 18)}}的其他基金
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8089310 - 财政年份:2010
- 资助金额:
$ 16.9万 - 项目类别:
Using a humanoid robot to understand and repair sensorimotor control
使用人形机器人理解和修复感觉运动控制
- 批准号:
7794526 - 财政年份:2010
- 资助金额:
$ 16.9万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8055745 - 财政年份:2010
- 资助金额:
$ 16.9万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8507287 - 财政年份:2010
- 资助金额:
$ 16.9万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8288148 - 财政年份:2010
- 资助金额:
$ 16.9万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
8063468 - 财政年份:2008
- 资助金额:
$ 16.9万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7466718 - 财政年份:2008
- 资助金额:
$ 16.9万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7795668 - 财政年份:2008
- 资助金额:
$ 16.9万 - 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:
7624956 - 财政年份:2008
- 资助金额:
$ 16.9万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7901879 - 财政年份:2008
- 资助金额:
$ 16.9万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.9万 - 项目类别:
Continuing Grant














{{item.name}}会员




