CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
基本信息
- 批准号:8507287
- 负责人:
- 金额:$ 24.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmputeesBehaviorBrainCommunicationComplexDataData AnalysesData CollectionData SetDevicesDoseElectrodesElectroencephalographyEpilepsyEye MovementsFeedbackGoalsHandHead MovementsHome environmentHybridsInstructionKnowledgeLearningLeftLifeLiftingMachine LearningMagnetic Resonance ImagingManualsMeasurementMethodologyMethodsModelingMotorMotor ActivityMovementMovement DisordersNeckPatientsPhysical environmentPositioning AttributeProsthesisRobotRoboticsSchemeScienceShapesSignal TransductionSimulateSourceSpecific qualifier valueSpinal cord injuryStrokeTestingTextTimeUpper ExtremityWorkarmbrain machine interfacedesigngraspinstrumentinterestkinematicsvisual feedback
项目摘要
Interacting with the physical environment and manipulating objects is an essential part of daily life. This
ability is lost in upper-limb amputees as well as patients with spinal cord injury, stroke, ALS and other
movement disorders. These people know what they want to do as well as how they would do it if their arms
were functional. If such knowledge is decoded and sent to a prosthetic arm (or to the patient's own arm fitted
with functional electric stimulators) the lost motor function could be restored. The decoding is unlikely to be
perfect however the brain can adapt to an imperfect decoder using real-time feedback. Several groups
including ours have recently demonstrated that at least in principle this can be achieved. However, as is
often the case in science, the initial work has been done in idealized conditions and its applicability to
real-world usage scenarios remains an open question. The goal of this project is to bring movement control
brain-machine interfaces (BMIs) closer to helping the people who need them, and at the same time exploit
the rich datasets we collect in order to advance our understanding of sensorimotor control and learning. This
will be accomplished by creating hybrid BMIs which exploit information from multiple sources, combined with
modern algorithms from machine learning and automatic control.
RELEVANCE (See instructions):
Being able to interact with the physical environment and manipulate objects is an essential part of daily life.
Brain-machine interfaces are one way to restore this ability to patients who have lost it. The proposed
project will bring brain-machine interfaces closer to helping patients in real-worid object manipulation tasks.
与物理环境交互和操纵物体是日常生活的重要组成部分。这
上肢截肢者以及脊髓损伤、中风、ALS和其他疾病患者的能力丧失。
运动障碍。这些人知道他们想做什么,也知道如果他们的手臂
是可行的。如果这种知识被解码并发送到假肢(或患者自己的手臂安装
使用功能性电刺激器)可以恢复失去的运动功能。解码不太可能是
然而,大脑可以使用实时反馈来适应不完美的解码器。几组
包括我们的国家最近都表明,至少在原则上这是可以实现的。然而,
通常情况下,在科学,最初的工作已经完成了理想化的条件和适用性,
现实世界的使用场景仍然是一个悬而未决的问题。这个项目的目标是把运动控制
脑机接口(BMI)更接近于帮助需要它们的人,同时利用
我们收集了丰富的数据集,以促进我们对感觉运动控制和学习的理解。这
将通过创建混合BMI来实现,该混合BMI利用来自多个来源的信息,
现代算法从机器学习和自动控制。
相关性(参见说明):
能够与物理环境交互并操纵物体是日常生活的重要组成部分。
脑机接口是恢复失去这种能力的患者的一种方法。
该项目将使脑机接口更接近于帮助患者完成现实世界的物体操作任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuel Todorov其他文献
Emanuel Todorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuel Todorov', 18)}}的其他基金
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8089310 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
Using a humanoid robot to understand and repair sensorimotor control
使用人形机器人理解和修复感觉运动控制
- 批准号:
7794526 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8055745 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8288148 - 财政年份:2010
- 资助金额:
$ 24.04万 - 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:
7512485 - 财政年份:2008
- 资助金额:
$ 24.04万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
8063468 - 财政年份:2008
- 资助金额:
$ 24.04万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7466718 - 财政年份:2008
- 资助金额:
$ 24.04万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7795668 - 财政年份:2008
- 资助金额:
$ 24.04万 - 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:
7624956 - 财政年份:2008
- 资助金额:
$ 24.04万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7901879 - 财政年份:2008
- 资助金额:
$ 24.04万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 24.04万 - 项目类别:
Research Grant














{{item.name}}会员




