Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
基本信息
- 批准号:8063468
- 负责人:
- 金额:$ 20.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsBasic ScienceBehaviorBehavioralBrainComplexDataDisabled PersonsElectric StimulationEngineeringEnvironmentEquilibriumFeedbackFundingGoalsHealthHumanLightLiteratureMethodsModelingMotorMovementMovement DisordersMuscleMusculoskeletalMusculoskeletal SystemNoiseOutcomePatientsPatternPerformanceProsthesisPsychophysiologyQuality of lifeResearch Project GrantsRoboticsSensorimotor functionsSensorySignal TransductionStructureSystemTimeWorkarmcomputerized toolsdata modelingdesigndirect applicationelectric impedanceeye hand coordinationimproved functioningkinematicsmathematical theorymind controlnovelresearch studyresponsesimulationtheories
项目摘要
DESCRIPTION (provided by applicant): We propose to further develop our optimal feedback control theory of motor coordination, and utilize its potential to explain known phenomena and as well as novel experimental results on goal-directed arm movements in 2D and 3D. We will use the theory to shed new light on several important issues in sensorimotor control: regularities in kinematics and muscle activations, task-specific impedance and responses to perturbations, origins and structure of motor variability, and eye-hand coordination patterns. In addition to basic research, the project involves a substantial bio-engineering component with direct applications to health. We will construct detailed musculoskeletal models of the human arm and develop hierarchical control algorithms capable of making the model arm accomplish behavioral goals in real time. Such algorithms can then be used to control functional electric stimulators and robotic prostheses, and thereby restore motor function and improve the quality of life of disabled patients. PUBLIC HEALTH RELEVANCE: We will develop a general mathematical theory of how the brain controls arm movements. Better theoretical understanding of motor function can facilitate the design of new treatments for movement disorders. We will also develop automatic control algorithms that can use signals extracted from the brain to make a prosthetic arm accomplish desired movement goals.
描述(由申请人提供):我们建议进一步发展运动协调的最佳反馈控制理论,并利用其潜力来解释已知现象以及2D和3D目标定向手臂运动的新实验结果。我们将使用该理论来阐明感觉运动控制中的几个重要问题:运动学和肌肉激活的规律,特定任务的阻抗和对扰动的反应,运动变异性的起源和结构,以及眼手协调模式。除基础研究外,该项目还涉及直接应用于健康的大量生物工程组成部分。我们将构建人体手臂的详细肌肉骨骼模型,并开发能够使模型手臂实时完成行为目标的分层控制算法。这样的算法可以用来控制功能性电刺激器和机器人假肢,从而恢复运动功能,提高残疾患者的生活质量。公共卫生相关性:我们将发展大脑如何控制手臂运动的一般数学理论。对运动功能更好的理论理解有助于设计新的运动障碍治疗方法。我们还将开发自动控制算法,可以使用从大脑中提取的信号使假肢手臂完成预期的运动目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuel Todorov其他文献
Emanuel Todorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuel Todorov', 18)}}的其他基金
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8089310 - 财政年份:2010
- 资助金额:
$ 20.07万 - 项目类别:
Using a humanoid robot to understand and repair sensorimotor control
使用人形机器人理解和修复感觉运动控制
- 批准号:
7794526 - 财政年份:2010
- 资助金额:
$ 20.07万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8055745 - 财政年份:2010
- 资助金额:
$ 20.07万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8507287 - 财政年份:2010
- 资助金额:
$ 20.07万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8288148 - 财政年份:2010
- 资助金额:
$ 20.07万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7466718 - 财政年份:2008
- 资助金额:
$ 20.07万 - 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:
7512485 - 财政年份:2008
- 资助金额:
$ 20.07万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7795668 - 财政年份:2008
- 资助金额:
$ 20.07万 - 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:
7624956 - 财政年份:2008
- 资助金额:
$ 20.07万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7901879 - 财政年份:2008
- 资助金额:
$ 20.07万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant