Post-transcriptional feedback control of polyamine metabolism in yeast: an integrated modelling and experimental investigation

酵母多胺代谢的转录后反馈控制:综合建模和实验研究

基本信息

  • 批准号:
    BB/F019602/1
  • 负责人:
  • 金额:
    $ 24.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The cell is the basic unit of life, and a typical multi-celled organism like a human is made up of literally millions of such building blocks. Within each cell, thousands of chemical reactions take place, controlling everything from energy generation to DNA manufacture. All these chemical reactions are enclosed within the membrane that surrounds the cell. One set of such chemical reactions forms the focus of this research proposal, and is involved in the manufacture of a series of important compounds called polyamines. Polyamines are small molecules that play a crucial role in cell health and viability, and without them, life would be unsupportable. Changes in the levels of polyamines can cause cell death or cancer, as well as human genetic disease like the mental retardation disorder Snyder-Robinson Syndrome. Polyamines help support a range of processes central for viability. For instance, they help DNA to be correctly packaged and folded. In doing so, they help the genes encoded in the DNA to be correctly switched on and off, or 'expressed'. Polyamines also help another polymer called RNA to fold correctly, and again, RNA plays a central role in gene expression. As a final example, polyamines help protect the membrane in the cell from damage by the oxidising chemicals generated accidentally in the cell when energy is generated; as such, polyamines play a very similar role to vitamin C, an important anti-oxidant found in our diet. In a factory or chemical plant, chemical reactions are always carefully controlled, and in this respect, the cell is no different. Its chemical reactions are also subject to a series of checks and balances perfected over the course of evolution to make sure the reactions can be turned on, or off, as more or less product is required. Without this control, living systems would not exhibit the ability to respond to changes in the environment, and indeed, in some cases, would cease to be viable. The requirement for effective, tight control has resulted in many cellular chemical reactions, including those of polyamine synthesis, being subject to complex, multiple and interlocking controls. Understanding how control over polyamine synthesis operates in a living cell, how robust that control is, and under what circumstances the control might break down, for example in a disease state like cancer or Snyder-Robinson Syndrome, is a problem that can only be addressed by the new field of systems biology. In systems biology, biologists work in multi-disciplinary teams with physical scientists such as control engineers to try and understand how biological control processes interact to enable robust control to be exerted. This interdisciplinary approach is required as a direct response to the complexity of the polyamine control mechanisms being studied, which renders standard biological research approaches inadequate. In this proposal, biologists and control engineers will be working together in an interdisciplinary team to subject the polyamine synthesis pathway to a systems biology analysis. Mathematical models of the biochemical reactions will be developed, tested and employed to test hypotheses about how the pathway functions. The aim is to understand how polyamine manufacture is controlled, to understand what goes wrong with the control processes in human disease states, and to understand how robust polyamine control is i.e. how successfully is control maintained despite changes in cell biochemistry. The research project will reveal how control over this key metabolic process is exerted in a healthy cell, and how that control goes wrong in different disease states.
细胞是生命的基本单位,像人类这样典型的多细胞有机体是由数以百万计的这样的构件组成的。在每个细胞内,成千上万的化学反应发生,控制着从能源产生到DNA制造的一切。所有这些化学反应都被包围在细胞周围的膜内。其中一组这样的化学反应形成了这项研究计划的重点,并参与了一系列称为多胺的重要化合物的制造。多胺是一种小分子,对细胞的健康和生存能力起着至关重要的作用,没有它们,生命将难以为继。多胺水平的变化可能会导致细胞死亡或癌症,以及人类遗传性疾病,如智力低下障碍斯奈德-罗宾逊综合征。多胺有助于支持一系列对生存至关重要的过程。例如,它们可以帮助DNA正确包装和折叠。在这样做的过程中,它们帮助DNA中编码的基因被正确地开启和关闭,或者说“表达”。多胺还可以帮助另一种名为RNA的聚合物正确折叠,同样,RNA在基因表达中发挥着核心作用。作为最后一个例子,多胺有助于保护细胞膜免受细胞产生能量时意外产生的氧化化学物质的破坏;因此,多胺的作用与维生素C非常相似,维生素C是我们饮食中发现的一种重要抗氧化剂。在工厂或化工厂,化学反应总是被小心地控制,在这方面,细胞也没有什么不同。它的化学反应也受到一系列在进化过程中完善的制衡,以确保反应可以开启或关闭,因为需要或多或少的产品。如果没有这种控制,生命系统就不会表现出对环境变化的反应能力,甚至在某些情况下,将不再具有生存能力。对有效、严格控制的要求导致了许多细胞化学反应,包括多胺合成的化学反应,受到复杂的、多重的和连锁的控制。了解在活细胞中对多胺合成的控制是如何运作的,这种控制有多强大,以及在什么情况下控制可能会崩溃,例如在癌症或Snyder-Robinson综合征等疾病状态下,这是一个只有系统生物学新领域才能解决的问题。在系统生物学中,生物学家与控制工程师等物理学家一起在多学科团队中工作,试图了解生物控制过程是如何相互作用的,从而能够实施稳健的控制。这种跨学科的方法是对正在研究的多胺控制机制的复杂性的直接反应,这使得标准的生物学研究方法不够充分。在这项提案中,生物学家和控制工程师将在一个跨学科团队中共同工作,对多胺合成途径进行系统生物学分析。生化反应的数学模型将被开发、测试并用于测试有关该途径如何发挥作用的假说。其目的是了解多胺生产是如何被控制的,了解在人类疾病状态下控制过程出了什么问题,并了解多胺控制是如何强大的,即尽管细胞生化发生变化,控制是如何成功地维持的。该研究项目将揭示健康细胞如何对这一关键代谢过程进行控制,以及这种控制在不同疾病状态下是如何出错的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift.
  • DOI:
    10.1093/nar/gkq1349
  • 发表时间:
    2011-06
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Rato C;Amirova SR;Bates DG;Stansfield I;Wallace HM
  • 通讯作者:
    Wallace HM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Declan Bates其他文献

The effects of high-flow nasal oxygen during apnoea in obesity: a computational modelling investigation
  • DOI:
    10.1016/j.tacc.2019.12.067
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Husam Alahmadi;Marianna Laviola;Declan Bates;Jonathan Hardman
  • 通讯作者:
    Jonathan Hardman

Declan Bates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Declan Bates', 18)}}的其他基金

Investigating Strategies for Mechanical Ventilation in COVID-19 via Computational Simulation of Virtual Patients
通过虚拟患者的计算模拟研究 COVID-19 的机械通气策略
  • 批准号:
    EP/V014455/1
  • 财政年份:
    2020
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
Personalised Simulation Technologies for Optimising Treatment in the Intensive Care Unit: Realising Industrial and Medical Applications
用于优化重症监护病房治疗的个性化仿真技术:实现工业和医疗应用
  • 批准号:
    EP/P023444/1
  • 财政年份:
    2017
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
15 NSFBIO: Rewritable biocomputers in mammalian cells
15 NSFBIO:哺乳动物细胞中的可重写生物计算机
  • 批准号:
    BB/P011926/1
  • 财政年份:
    2017
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
Development, validation and application of population-based pulmonary disease models using robustness analysis and ensemble forecasting
使用稳健性分析和集合预测开发、验证和应用基于人群的肺部疾病模型
  • 批准号:
    EP/I036680/2
  • 财政年份:
    2013
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
Development, validation and application of population-based pulmonary disease models using robustness analysis and ensemble forecasting
使用稳健性分析和集合预测开发、验证和应用基于人群的肺部疾病模型
  • 批准号:
    EP/I036680/1
  • 财政年份:
    2011
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
PREVENTING VENTILATOR-ASSOCIATED LUNG INJURY USING FEEDBACK CONTROL ENGINEERING
利用反馈控制工程预防呼吸机相关的肺损伤
  • 批准号:
    EP/F057016/2
  • 财政年份:
    2010
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
Post-transcriptional feedback control of polyamine metabolism in yeast: an integrated modelling and experimental investigation
酵母多胺代谢的转录后反馈控制:综合建模和实验研究
  • 批准号:
    BB/F019602/2
  • 财政年份:
    2010
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
IMPROVING THE CLINICAL APPLICABILITY OF PATHOPHYSIOLOGICAL MODELLING OF HYPOXAEMIA USING ROBUSTNESS ANALYSIS
利用稳健性分析提高低氧血症病理生理学模型的临床适用性
  • 批准号:
    EP/E055486/1
  • 财政年份:
    2008
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
PREVENTING VENTILATOR-ASSOCIATED LUNG INJURY USING FEEDBACK CONTROL ENGINEERING
利用反馈控制工程预防呼吸机相关的肺损伤
  • 批准号:
    EP/F057016/1
  • 财政年份:
    2008
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant
ANALYSIS OF BIOCHEMICAL NETWORK MODELS USING ROBUST CONTROL THEORY
使用鲁棒控制理论分析生化网络模型
  • 批准号:
    BB/D015340/1
  • 财政年份:
    2007
  • 资助金额:
    $ 24.02万
  • 项目类别:
    Research Grant

相似国自然基金

缺氧诱导因子(HIF)-2α转录抑制树突状细胞CD36表达减轻肾脏缺血再灌注损伤的机制
  • 批准号:
    82370751
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
辅酶A类代谢中间产物参与组蛋白表观遗传修饰调控肝细胞代谢网络对高油脂营养应答的机制研究
  • 批准号:
    91957110
  • 批准年份:
    2019
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划
用dsDNA微阵列筛选NF-κB DNA靶点及靶基因
  • 批准号:
    60871014
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
新的膀胱癌特异基因UCA1在膀胱癌高表达的分子机理
  • 批准号:
    30801325
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characterizing Sleep Disruption as a Post-Injury Immune Stressor
将睡眠中断描述为损伤后免疫应激源
  • 批准号:
    9896863
  • 财政年份:
    2019
  • 资助金额:
    $ 24.02万
  • 项目类别:
Characterizing Sleep Disruption as a Post-Injury Immune Stressor
将睡眠中断描述为损伤后免疫应激源
  • 批准号:
    9762268
  • 财政年份:
    2019
  • 资助金额:
    $ 24.02万
  • 项目类别:
Characterizing Sleep Disruption as a Post-Injury Immune Stressor
将睡眠中断描述为损伤后免疫应激源
  • 批准号:
    10380627
  • 财政年份:
    2019
  • 资助金额:
    $ 24.02万
  • 项目类别:
Characterizing Sleep Disruption as a Post-Injury Immune Stressor
将睡眠中断描述为损伤后免疫应激源
  • 批准号:
    10633060
  • 财政年份:
    2019
  • 资助金额:
    $ 24.02万
  • 项目类别:
Characterizing Sleep Disruption as a Post-Injury Immune Stressor
将睡眠中断描述为损伤后免疫应激源
  • 批准号:
    10627062
  • 财政年份:
    2019
  • 资助金额:
    $ 24.02万
  • 项目类别:
Characterizing Sleep Disruption as a Post-Injury Immune Stressor
将睡眠中断描述为损伤后免疫应激源
  • 批准号:
    10813401
  • 财政年份:
    2019
  • 资助金额:
    $ 24.02万
  • 项目类别:
Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
  • 批准号:
    10228665
  • 财政年份:
    2018
  • 资助金额:
    $ 24.02万
  • 项目类别:
Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
  • 批准号:
    10621067
  • 财政年份:
    2018
  • 资助金额:
    $ 24.02万
  • 项目类别:
Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
  • 批准号:
    10372273
  • 财政年份:
    2018
  • 资助金额:
    $ 24.02万
  • 项目类别:
Investigating Circadian Post-Transcriptional Regulation.
研究昼夜节律转录后调节。
  • 批准号:
    10454368
  • 财政年份:
    2018
  • 资助金额:
    $ 24.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了