Process Algebra Approaches to Collective Dynamics

集体动力学的过程代数方法

基本信息

  • 批准号:
    EP/C54370X/1
  • 负责人:
  • 金额:
    $ 27.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim of this scientific research programme is to help to understand how we can predict the dynamic behaviour of a population when we can model the behaviour of the individuals.There are application areas in many scientific fields for a question such as this, but one of the most important is in biology. Biologists study cells, reagents, molecules, and molecular complexes in order to gain insights into growth and change. Here carefully defined models have increasing importance because more and more biological research is now being done using computer-based analysis. That form of research complements the biological research which is traditional laboratory science, based on controlled experiments, data gathering, and observation. Models allow the biologists to try to make sense of the data they have observed, forming hypotheses which may then be tested in further experiments. Their research findings inspire the design of new drugs and treatments which fight illness and improve human and animal health.Scientists need languages in order to communicate effectively and unambiguously. The models developed by biologists are often written in the mathematical notation for calculus invented by Leibniz, as differential equations. Whilst this notation has many virtues it is not always the most intuitive to use, and can be far removed from the cellular processes being described. So biologists have been investigating the use of other system description languages, from other areas of science.Computer science has more experience than the other sciences in formal language design. In computer science formal languages have been used for a variety of purposes, one of which is the design and validation of programs. One class of languages which have been used for this purpose are process algebras, which as well as features for describing systems, come equipped with techniques for comparing systems and proving properties about them. Formal languages such as process algebras do not evolve naturally in the way that human languages do. Instead, they need to be carefully designed.This fellowship will bring the benefits of the experience of computer science in formal language design to the design of a new process algebra for modelling biological systems, the language BioSPA. One crucial aspect of this new language will be its use of mathematically quantified randomness. In every living thing is a controlled amount of randomness because living things are fuelled by chemical reactions. Systems of chemical reactions evolve stochastically because of the inherent randomness of thermal molecular motion.The BioSPA language will be supported by software tools which will allow biologists to see their models in a number of ways. For example, as a Markov process, a mathematical process which randomly moves between a number of distinct states, or as a series of ordinary differential equations. For either representation it will be possible to trace a possible evolution of the system or to solve the model numerically. The latter could allow a biologist to predict a key value at a specific time, such as the concentration of a particular molecule after ten minutes.A unique feature of the BioSPA language will be that it will also be possible to systematically prove properties of models in the language in order to ensure that they represent the system which the biologists wish to study. This strong, well-designed language will help to ensure the correctness of biological research and the validity of its results, with attendant benefits for medical and pharmaceutical research leading to improvements in the prevention and treatment of illness.
这个科学研究计划的目的是帮助理解当我们可以对个人的行为进行建模时,我们如何预测一个群体的动态行为。这样的问题在许多科学领域都有应用领域,但最重要的是生物学领域。生物学家研究细胞、试剂、分子和分子复合体,以便洞察生长和变化。在这里,仔细定义的模型变得越来越重要,因为现在越来越多的生物学研究正在使用基于计算机的分析来完成。这种研究形式是对生物学研究的补充,生物学研究是基于对照实验、数据收集和观察的传统实验室科学。模型允许生物学家试图理解他们观察到的数据,形成假说,然后在进一步的实验中进行检验。他们的研究发现启发了抗击疾病和改善人类和动物健康的新药和治疗方法的设计。科学家需要语言来进行有效和明确的沟通。生物学家开发的模型通常用莱布尼茨发明的微积分的数学符号写成微分方程式。虽然这种记法有许多优点,但它并不总是最直观的使用方法,而且可以与所描述的细胞过程相去甚远。因此,生物学家一直在研究其他科学领域的其他系统描述语言的使用。计算机科学在形式语言设计方面比其他科学有更多的经验。在计算机科学中,形式语言被用于各种目的,其中之一是程序的设计和验证。用于这一目的的一类语言是进程代数,它除了用于描述系统的特征外,还配备了比较系统和证明系统性质的技术。像进程代数这样的形式语言不会像人类语言那样自然演化。相反,它们需要精心设计。这一奖学金将把计算机科学在形式语言设计方面的经验带到设计一种用于模拟生物系统的新进程代数--语言BioSPA。这种新语言的一个关键方面将是它使用了数学上量化的随机性。每一种生物都有一定数量的随机性,因为生物是由化学反应驱动的。由于热分子运动固有的随机性,化学反应系统的演化是随机的。BioSPA语言将得到软件工具的支持,这将允许生物学家以多种方式查看他们的模型。例如,作为马尔可夫过程,在若干不同状态之间随机移动的数学过程,或作为一系列常微分方程式。对于任何一种表示,都有可能跟踪系统的可能演变或以数字方式求解该模型。后者可以允许生物学家预测特定时间的关键值,例如10分钟后特定分子的浓度。BioSPA语言的一个独特特征是,还可以系统地证明该语言中的模型的性质,以确保它们代表生物学家希望研究的系统。这一强有力的、精心设计的语言将有助于确保生物研究的正确性及其结果的有效性,并随之而来的是医学和药物研究的好处,从而改善疾病的预防和治疗。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bio-PEPA for epidemiological models, in Proceedings of Practical Aspects of Stochastic Modelling
用于流行病学模型的 Bio-PEPA,发表于随机模型实践方面的论文集
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F Ciocchetta
  • 通讯作者:
    F Ciocchetta
Formal Methods for Computational Systems Biology
计算系统生物学的形式化方法
  • DOI:
    10.1007/978-3-540-68894-5_8
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ciocchetta F
  • 通讯作者:
    Ciocchetta F
Formal Methods for Performance Evaluation
绩效评估的正式方法
  • DOI:
    10.1007/978-3-540-72522-0_4
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clark A
  • 通讯作者:
    Clark A
Some Investigations Concerning the CTMC and the ODE Model Derived From Bio-PEPA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jane Hillston其他文献

A Compositional Approach to Performance Modeling
  • DOI:
  • 发表时间:
    1984
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jane Hillston
  • 通讯作者:
    Jane Hillston
Quantifying the implicit process flow abstraction in SBGN-PD diagrams with Bio-PEPA
使用 Bio-PEPA 量化 SBGN-PD 图中的隐式流程抽象
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laurence Loewe;Stuart L. Moodie;Jane Hillston
  • 通讯作者:
    Jane Hillston
Numerically Representing A Stochastic Process Algebra Models
随机过程代数模型的数值表示
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Ding;Jane Hillston
  • 通讯作者:
    Jane Hillston
Numerically Representing Stochastic Process Algebra Models
随机过程代数模型的数值表示
  • DOI:
    10.1093/comjnl/bxs013
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Jie Ding;Jane Hillston
  • 通讯作者:
    Jane Hillston
A Reservation Optimised Advance Resource Reservation Scheme for Deploying RSVP in Mobile Environments
  • DOI:
    10.1007/s11277-009-9724-1
  • 发表时间:
    2009-04-23
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Hao Wang;David I. Laurenson;Jane Hillston
  • 通讯作者:
    Jane Hillston

Jane Hillston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jane Hillston', 18)}}的其他基金

SIGNAL: Stochastic process algebra for biochemical signalling pathway analysis
信号:用于生化信号通路分析的随机过程代数
  • 批准号:
    EP/E031439/1
  • 财政年份:
    2007
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Research Grant

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Continuing Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了