EDAC: ENCODE Data Analysis Center
EDAC:ENCODE数据分析中心
基本信息
- 批准号:7499147
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-15 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaArtsBe++ elementBehaviorBerylliumBioinformaticsBiologicalBiological SciencesCollaborationsComplexComputational TechniqueComputing MethodologiesCoupledDataData AnalysesData CollectionData SetDepthDevelopmentEducational workshopEngineeringEquipment and supply inventoriesFreezingGene Expression RegulationGenomeGenomicsGoalsHeterogeneityHuman GenomeIndiumLinkMachine LearningManuscriptsMapsMethodsMetricNatureNumbersPhasePilot ProjectsPublicationsRecordsReportingResearch PersonnelResourcesScientistSourceStatistical ModelsStructureTechniquesTelephoneTranscriptVertebral columnWorkbasecomputer sciencedata integrationexperienceexperimental analysisfootinsightmembernovelquality assurancescale upsizesymposiumtheoriestool
项目摘要
DESCRIPTION (provided by applicant): The ENCODE Data Analysis Center (EDAC) proposal aims to provide a flexible analysis resource for the ENCODE project. The ENCODE project is a large multi center project which aims to define all the functional elements in the human genome. This will be achieved using many different experimental techniques coupled with numerous computational techniques. A critical part in delivering this set of functional elements is the integration of data from multiple sources. The ED AC proposal aims to provide this integration. As proscribed by the RFA for this proposal, the precise prioritization for the EDAC's work will be set by an external group, the Analysis Working Group (AWG). Based on previous experience, these analysis methods will require a variety of techniques. We expect to have to apply sophisticated statistical models to the integration of the data, in particular mitigating the problems of the extensive heterogeneity and correlation of variables on the human genome. We have statistical experts who can use the large size of the human genome, coupled with a limited number of sensible assumptions to produce statistical techniques which are robust to this considerable heterogeneity. We also expect to apply machine learning techniques to build integration methods combining datasets. These included Bayesian based inference methods and the robust computer science technique of Support Vector Machines. Each of these methods have performed well in the ENCODE pilot project and we expect them to be even more useful in the full ENCODE project. We will also provide quality assurance and summary metrics of genome-wide multiple alignments. This area has a number of complex statistical, algorithmic and engineering issues, which we will solve using state of the art techniques. Overall we aim to provide deep integration of the ENCODE data, under the direction of the AWG and in tight collaboration with the other members of the ENCODE consortium.
描述(申请人提供):ENCODE数据分析中心(EDAC)提案旨在为ENCODE项目提供灵活的分析资源。ENCODE项目是一个大型的多中心项目,旨在定义人类基因组中的所有功能元件。这将使用许多不同的实验技术和大量的计算技术来实现。交付这组功能元素的关键部分是集成来自多个来源的数据。教育署谘询委员会的建议旨在提供这方面的整合。正如RFA对这项提议所禁止的那样,EDAC工作的准确优先顺序将由一个外部小组--分析工作组(AWG)确定。根据以往的经验,这些分析方法需要多种技术。我们预计将不得不将复杂的统计模型应用于数据的整合,特别是缓解人类基因组中变量的广泛异质性和相关性的问题。我们有统计专家,他们可以使用庞大的人类基因组,加上有限数量的合理假设来产生统计技术,这些技术对这种相当大的异质性是健壮的。我们还希望应用机器学习技术来构建结合数据集的集成方法。这些方法包括基于贝叶斯的推理方法和稳健的支持向量机计算机科学技术。这些方法中的每一种都在ENCODE试验项目中表现良好,我们希望它们在整个ENCODE项目中更加有用。我们还将提供全基因组多重比对的质量保证和汇总指标。这个领域有许多复杂的统计、算法和工程问题,我们将使用最先进的技术来解决这些问题。总体而言,我们的目标是在特设工作组的指导下,并与ENCODE联盟的其他成员密切合作,提供ENCODE数据的深度整合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ewan Birney其他文献
Ewan Birney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ewan Birney', 18)}}的其他基金
The medaka Kiyosu panel: dissecting GxE effects of environmental chemicals
青鳉 Kiyosu 小组:剖析环境化学品的 GxE 效应
- 批准号:
10331784 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
The medaka Kiyosu panel: dissecting GxE effects of environmental chemicals
青鳉 Kiyosu 小组:剖析环境化学品的 GxE 效应
- 批准号:
10551993 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
GENCODE: comprehensive reference genome annotation for human and mouse
GENCODE:人类和小鼠的综合参考基因组注释
- 批准号:
10709568 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
GENCODE: comprehensive reference genome annotation for human and mouse
GENCODE:人类和小鼠的综合参考基因组注释
- 批准号:
10488576 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 120万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 120万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Standard Grant














{{item.name}}会员




