Prime spectra, automorphism groups and poisson structures associated with quantum algebras.

与量子代数相关的素谱、自同构群和泊松结构。

基本信息

  • 批准号:
    EP/D034167/1
  • 负责人:
  • 金额:
    $ 15.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The subject of Quantum Groups and Quantum Algebras developed out of ideas in physics in the 80s. Subsequently, the range of applications in physics, and their pivotal role in several areas of mathematics has lead to this subject being one of the most active in mathematics. From an algebraic point of view, it has recently become apparent that the subject should be studied as part of the developing theory of Noncommutative Geometry. In this theory, the noncommutative algebras arising from deformations of the classical commutative case are studied by algebraic means, but from a geometrical perspective. This development is somewhat akin to the development in physics of Quantum Mechanics as a noncommutative deformation of the classical Newtonian view of physics - the noncommutativity reflecting the uncertainty principle. From this point of view, the 'points', 'curves', 'surfaces', etc. in classical geometry are replaced in noncommutative geometry by the prime and primitive spectra and the representation theory of the algebras. The most important algebras that arise in this study are the quantum coordinate algebras and quantum enveloping algebras arising from the classical groups and the algebra of quantum matrices. Important tasks are to understand the prime spectra, to calculate automorphism groups and to understand the poisson structure that the classical world inherits from the quantum world. These are the main tasks involved in this proposal. The tasks are interlinked. In contrast with their classical counterparts, the quantum deformations are much more rigid objects (at least in the generic case) and this is reflected by the relatively small size of the so-called H-prime spectrum of these algebras. This in turn puts restrictions on the possible automorphism of the algebras and should lead to much smaller automorphism groups. The poisson structure in the classical case should then be linked in a natural way to the corresponding quantum features.
量子群和量子代数这门学科是从80年代的物理学思想发展而来的。随后,物理学的广泛应用,以及它们在数学几个领域的关键作用,使这门学科成为数学中最活跃的学科之一。从代数的角度来看,最近很明显,这个主题应该作为发展中的非交换几何理论的一部分来研究。在这个理论中,由经典交换情况的变形引起的非交换代数用代数的方法,但从几何的角度进行了研究。这种发展在某种程度上类似于量子力学在物理学中的发展,作为经典牛顿物理学观点的非对易变形——反映不确定性原理的非对易性。从这个角度来看,经典几何中的“点”、“曲线”、“曲面”等在非交换几何中被素数谱和原始谱以及代数的表示理论所取代。在本研究中出现的最重要的代数是由经典群和量子矩阵代数产生的量子坐标代数和量子包络代数。重要的任务是理解素谱,计算自同构群和理解经典世界从量子世界继承的泊松结构。这些是本提案所涉及的主要任务。任务是相互关联的。与它们的经典对应物相比,量子变形是更加刚性的对象(至少在一般情况下),这反映在这些代数的所谓h -素数谱的相对较小的尺寸上。这反过来又限制了代数可能的自同构,并应该导致更小的自同构群。经典情况下的泊松结构应该以一种自然的方式与相应的量子特征联系起来。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Poisson (co)homology of truncated polynomial algebras in two variables
  • DOI:
    10.1016/j.crma.2008.12.005
  • 发表时间:
    2008-05
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    S. Launois;Lionel Richard
  • 通讯作者:
    S. Launois;Lionel Richard
On Morita equivalence for simple Generalized Weyl algebras
简单广义Weyl代数的Morita等价
  • DOI:
    10.48550/arxiv.0805.3933
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard L
  • 通讯作者:
    Richard L
Quasi-Lie structure of twisted derivations of Laurent polynomials
洛朗多项式扭曲导数的拟李结构
  • DOI:
    10.48550/arxiv.math/0608196
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard L
  • 通讯作者:
    Richard L
The first Hochschild cohomology group of quantum matrices and the quantum special linear group
量子矩阵的第一 Hochschild 上同调群和量子特殊线性群
Prime ideals in the quantum grassmannian
量子格拉斯曼的素理想
  • DOI:
    10.1007/s00029-008-0054-z
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Launois S
  • 通讯作者:
    Launois S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tom Lenagan其他文献

Tom Lenagan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tom Lenagan', 18)}}的其他基金

Total nonnegativity, quantum algebras and growth of algebras
总非负性、量子代数和代数增长
  • 批准号:
    EP/K035827/1
  • 财政年份:
    2013
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Research Grant

相似国自然基金

非连续谱高频雷达信号的理论和应用研究
  • 批准号:
    60602039
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
利用AATSR和SPECTRA联合反演植被组分温度的方法研究
  • 批准号:
    40471095
  • 批准年份:
    2004
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on High-Precision Real-Gas Aerodynamics Prediction Technique Using High-Speed Vacuum Ultraviolet Absorption Spectra Fitting Method
高速真空紫外吸收光谱拟合法高精度真气气动预测技术研究
  • 批准号:
    23H01613
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fast, Cost-Effective and Fully Automated Structure Verification through Synergistic Use of Infrared and NMR Spectra
通过红外和核磁共振光谱的协同使用进行快速、经济高效的全自动结构验证
  • 批准号:
    2894203
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Studentship
Comparative Study of the High Harmonic Spectra of Transition Metal Compounds
过渡金属化合物高次谐波谱的比较研究
  • 批准号:
    2309321
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
Conference: Groups of dynamical origin, automata and spectra
会议:动力学起源、自动机和谱组
  • 批准号:
    2309562
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
  • 批准号:
    10632893
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
  • 批准号:
    10713710
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
  • 批准号:
    2327245
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
Quantum Vibrational Spectra of Hydrogen in Materials by Ab Initio Semiclassical Molecular Dynamics
利用从头算半经典分子动力学研究材料中氢的量子振动光谱
  • 批准号:
    23K04670
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fully automated protein NMR assignments and structures from raw time-domain data by deep learning
通过深度学习根据原始时域数据全自动进行蛋白质 NMR 分配和结构
  • 批准号:
    23K05660
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on absolutely continuous diffraction and dynamical spectra for S-adic tilings
S-adic平铺的绝对连续衍射和动力学光谱研究
  • 批准号:
    23K12985
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了