Smart X-ray Optics

智能 X 射线光学器件

基本信息

  • 批准号:
    EP/D04880X/1
  • 负责人:
  • 金额:
    $ 391.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

X-rays are useful to us in many ways: they can be used to look inside all sorts of things / including people, for medical reasons, and luggage, for security purposes / and they can also be used for therapeutic purposes, such as killing cancer cells. At the other extreme, astronomers find X-rays invaluable for understanding the Universe: because the photons are so energetic, we can see deeper into space as we need fewer of them to get a reasonable signal from a detector. X-rays are already used in lots of applications, but there could be many more / if only we could focus them properly. X-rays are can do these things for us because the individual photons have more energy than the visible light we see around us / but, like light, X-rays are electromagnetic radiation. Another way to think about light is as waves, and just as blue light has a smaller wavelength than red light, X-rays have a very much smaller wavelength still. This quality is very significant because if you want to increase the accuracy with which you can measure something, or irradiate something, then the shorter the wavelength the better / in much the same way that having more, smaller pixels on the CCD in a digital camera will give you a sharper image. Our ability to manipulate visible light is pretty good; often we are able to make systems that work at the 'diffraction limit', which means that it is the wavelength itself which determines how good a job we can do. It is the ultimate physical limit that you can achieve, and we are nowhere near that with X-rays. If visible light optics were as bad as current X-ray optics, we would all be almost totally blind, with no chance of correcting it / yet. It is the energetic nature of X-rays that also makes them much harder to handle, and our ability to produce and manipulate them lags very significantly behind their visible light counterparts, even though they are potentially so useful. If we could handle X-rays at the level we can handle visible light we could open the door to all sorts of new science and technology: *cancer doctors could target and eradicate tumours*cancer researchers could gain a better understanding of the causes of the disease*astronomers could see much deeper into the Universe and so gain a better understanding of why we are here*researchers in many fields could investigate materials in fine detail, leading to increased knowledge of, for example, the causes of diseases and the action of pollutants,to name but a few. It is clear that we need a revolution in our X-ray optical technology! The team behind this project have expertise across the disciplines that use / or could use /X-rays, including manufacturing, medicine and astronomy, and some members have already worked together to prove the feasibility of some novel ideas. We have learned a lot from this early work, and hplan to take that forward. But we are not complacent; there are some new members in the team who will complete / for now / the enormous range of expertise that we need. As our ideas mature, we have every confidence that other researchers and users of the enabling technology will emerge from the woodwork, including airport security, industrial inspection and chip manufacture.Even though X-rays were discovered / by chance / 110 years ago, and they were very quickly put to use, their full capabilities remain to be explored. This project offers the chance, probably for the first time, to realise and capatilize upon this potential.
X射线在很多方面对我们都很有用:它们可以用来检查各种东西的内部,包括出于医疗原因的人和出于安全目的的行李,它们也可以用于治疗目的,例如杀死癌细胞。在另一个极端,天文学家发现X射线对于理解宇宙是非常宝贵的:因为光子是如此的充满活力,我们可以看到更深的空间,因为我们需要更少的光子来从探测器获得合理的信号。X射线已经被用于许多应用中,但如果我们能正确地聚焦它们,可能会有更多的应用。X射线可以为我们做这些事情,因为单个光子比我们周围看到的可见光具有更多的能量,但是,像光一样,X射线是电磁辐射。另一种看待光的方式是把光看作波,就像蓝光的波长比红光小一样,X射线的波长也要小得多。这种质量是非常重要的,因为如果你想提高测量或辐射的准确性,那么波长越短越好/就像数码相机中CCD上的像素越多越小会给你带来更清晰的图像一样。我们操纵可见光的能力相当不错;通常我们能够制造出工作在“衍射极限”的系统,这意味着波长本身决定了我们能做得多好。这是你能达到的终极物理极限,而我们的X射线还远远没有达到。如果可见光光学像目前的X射线光学一样糟糕,我们几乎都将完全失明,没有机会纠正它。正是X射线的能量性质也使它们更难处理,我们产生和操纵它们的能力远远落后于可见光,尽管它们可能非常有用。如果我们能像处理可见光那样处理X射线,我们就能为各种新的科学技术打开大门:* 癌症医生可以瞄准并根除肿瘤 * 癌症研究人员可以更好地了解疾病的原因 * 天文学家可以更深入地了解宇宙,从而更好地了解我们为什么在这里 * 许多领域的研究人员可以详细研究材料,导致对例如疾病的原因和污染物的作用的知识增加,仅举几例。很明显,我们需要一场X射线光学技术的革命!该项目背后的团队拥有使用/或可以使用/X射线的学科的专业知识,包括制造业,医学和天文学,一些成员已经共同努力证明了一些新想法的可行性。我们从早期的工作中学到了很多东西,并计划将其向前推进。但我们并不自满;团队中有一些新成员,他们将完成我们所需要的大量专业知识。随着我们的想法逐渐成熟,我们有信心,其他研究人员和使用这种技术的人将从木制品中脱颖而出,包括机场安全、工业检查和芯片制造。尽管X射线在110年前偶然发现,并很快投入使用,但其全部功能仍有待探索。这个项目提供了一个机会,可能是第一次,实现和capatively在这一潜力。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active Microstructured Optical Arrays of Grazing Incidence Reflectors
掠入射反射器的有源微结构光学阵列
The performance of thin shell adaptive optics for high angular resolution x-ray telescopes
高角分辨率X射线望远镜薄壳自适应光学器件的性能
  • DOI:
    10.1117/12.858821
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feldman C
  • 通讯作者:
    Feldman C
Development of spider micro-structured optical arrays for x-ray optics
用于X射线光学的蜘蛛微结构光学阵列的开发
  • DOI:
    10.1117/12.860420
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodriguez Sanmartin D
  • 通讯作者:
    Rodriguez Sanmartin D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Doel其他文献

Study of an Educational Hand Sorting Intervention for Reducing Aflatoxin B<sub>1</sub> in Groundnuts in Rural Gambia
  • DOI:
    10.4315/0362-028x.jfp-16-152
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ya Xu;Andrew Doel;Sinead Watson;Michael N. Routledge;Christopher T. Elliott;Sophie E. Moore;Yun Yun Gong
  • 通讯作者:
    Yun Yun Gong

Andrew Doel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Doel', 18)}}的其他基金

The Dark Energy Spectroscopic Instrument
暗能量光谱仪
  • 批准号:
    ST/M00287X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Research Grant
Dark Energy Spectrographic Instrument development
暗能量光谱仪器开发
  • 批准号:
    ST/L00299X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Research Grant
BigBOSS-UK development
BigBOSS-英国开发
  • 批准号:
    ST/J004847/1
  • 财政年份:
    2012
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Research Grant
Zonal Bimorph Deformable Mirror Feasibility Study
分区双压电晶片变形镜可行性研究
  • 批准号:
    PP/E003249/1
  • 财政年份:
    2007
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Research Grant
Large, ultra-thin, lightweight,carbon-fibre adaptive mirrors for ELTs
用于 ELT 的大型、超薄、轻质碳纤维自适应镜子
  • 批准号:
    PP/E007600/1
  • 财政年份:
    2007
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Research Grant

相似国自然基金

基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
  • 批准号:
    12373051
  • 批准年份:
    2023
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
同步X-ray成像对调控自噬的联合疗法抗三阴性乳腺癌机制研究
  • 批准号:
    22ZR1470600
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于时空信息融合的2D X-ray到3D CT图像配准实时引导肺癌放疗研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
不同基因型大豆根系生长改善压实土壤结构的机制研究
  • 批准号:
    42007010
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
荷载、浸水条件下花岗岩残积土微细观结构演化及损伤本构关系
  • 批准号:
    51978413
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于X射线线形分析技术的钒高温高压强度特性研究
  • 批准号:
    11872056
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于原位局域表面等离子体共振技术的CeO2/Ag催化剂表界面效应探索及在催化氧化甲醛中应用
  • 批准号:
    21802066
  • 批准年份:
    2018
  • 资助金额:
    26.6 万元
  • 项目类别:
    青年科学基金项目
CAT、DSA、x-ray与解剖技术相结合确立小腿后外侧皮支链皮瓣血管构筑
  • 批准号:
    31860294
  • 批准年份:
    2018
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
分子体系激光冷却的机理和方法的高精度理论研究
  • 批准号:
    21773251
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
若干蛋白质分子的取向测量的二维光谱理论研究
  • 批准号:
    21703221
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Probing Solar Axions with X-ray Optics for BabyIAXO
使用 BabyIAXO 的 X 射线光学器件探测太阳轴子
  • 批准号:
    2309980
  • 财政年份:
    2024
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Standard Grant
Study of transient state of high-intensity light-generated plasma and its application to X-ray optics
高强度光生等离子体瞬态研究及其在X射线光学中的应用
  • 批准号:
    23H03672
  • 财政年份:
    2023
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of X-ray nanobeam optics by precision wavefront control
通过精密波前控制开发 X 射线纳米束光学器件
  • 批准号:
    21H05004
  • 财政年份:
    2021
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
X-ray Optics for Biomedical Imaging Applications
用于生物医学成像应用的 X 射线光学器件
  • 批准号:
    RGPIN-2017-04422
  • 财政年份:
    2021
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Discovery Grants Program - Individual
Diffuse Optics for Pediatric Hydrocephalus Management
用于小儿脑积水治疗的漫射光学器件
  • 批准号:
    10087981
  • 财政年份:
    2020
  • 资助金额:
    $ 391.45万
  • 项目类别:
Diffuse Optics for Pediatric Hydrocephalus Management
用于小儿脑积水治疗的漫射光学器件
  • 批准号:
    10348794
  • 财政年份:
    2020
  • 资助金额:
    $ 391.45万
  • 项目类别:
X-ray Optics for Biomedical Imaging Applications
用于生物医学成像应用的 X 射线光学器件
  • 批准号:
    RGPIN-2017-04422
  • 财政年份:
    2020
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Discovery Grants Program - Individual
Diffuse Optics for Pediatric Hydrocephalus Management
用于小儿脑积水治疗的漫射光学器件
  • 批准号:
    10561614
  • 财政年份:
    2020
  • 资助金额:
    $ 391.45万
  • 项目类别:
1-nm-wide X-ray beams by developing millimeter-scale ultra-precision reflective optics
通过开发毫米级超精密反射光学器件实现 1 nm 宽的 X 射线束
  • 批准号:
    20J21562
  • 财政年份:
    2020
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Innovation in time-domain astronomy by X-ray optics with high-precision microfabrication
高精度微加工 X 射线光学在时域天文学中的创新
  • 批准号:
    20K20525
  • 财政年份:
    2020
  • 资助金额:
    $ 391.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了