Targeted Reinnervation and Pattern-Recognition Control for Transradial Amputees

经桡动脉截肢者的有针对性的神经再生和模式识别控制

基本信息

项目摘要

DESCRIPTION (provided by applicant): We propose to provide a set of clinically viable tools and procedures to substantially improve the control of myoelectric prostheses by transradial amputees. This proposal includes a pattern-recognition control package based on algorithms with demonstrated efficacy, an innovative new surgical technique for patients with transradial amputation that will substantially improve their ability to control prostheses and receive sensation feedback from them, and advanced pattern-recognition tools that will lead to even more robust adaptive control. In this project we will perform a series of tests that will improve the control of transradial prostheses using pattern recognition techniques. Subjects will be allowed to take these prostheses home for a month-long trial, to observe and rectify any remaining problems. Targeted Muscle Reinnervation (TMR) will be performed on six subjects. TMR is a new surgical technique that transfers amputated nerve to spare muscle and skin. It provides new myoelectric signals allowing intuitive and simultaneous control for improved function in amputees TMR will improve the accuracy of control, the number of classes that may be robustly controlled, and potentially allow for simultaneous, independent control of the hand and wrist. TMR allows for more natural control of the prosthesis, and also provides targeted sensory feedback, in which the subject feels their amputated hand through reinnervated skin on the residual limb. These two surgical procedures will greatly improve the function of transradial prostheses. TMR subjects will also undergo a field trial. Finally, adaptive pattern recognition techniques and parallel classifier technology will be investigated. Adaptive control may be crucial to clinical robustness from day to day as the user adapts to the classifier. Parallel control will allow subjects to simultaneously control wrist and hand classes, with high accuracy. This proposal will advance several areas of science, including pattern recognition and the physiology of reinnervation. Parallel classifiers and adaptive algorithm theory will be substantially developed beyond the current state of the art, and the concept of robustness in the absence of a known class will be explored in the context of electromyographic signals. This proposal will also advance our understanding of motor control as we implement these novel control techniques, and provide support for future experiments which will further develop our understanding in both motor and sensory reinnervation. An outstanding team has been assembled including the Rehabilitation Institute of Chicago, the University of New Brunswick, and Otto Bock, Inc. We believe the proposed research will advance the standard of care of persons with amputation. It will also serve as an important research platform for continuing to improve artificial limb function. PUBLIC HEALTH RELEVANCE. This project will apply an innovative surgery technique to subjects with transradial amputation, to improve control of their prosthesis. It will also develop new technologies to advance the control of prostheses that have more functions including wrist rotation, wrist flexion/extension and hands with moving fingers and thumbs. These studies will significantly improve the function of artificial arms for people with below elbow amputations.
描述(由申请人提供):我们建议提供一套临床可行的工具和程序,以大大改善经桡骨截肢者对肌电假肢的控制。该提案包括基于已证明有效的算法的模式识别控制包,为经桡骨截肢患者提供的创新手术技术,将大大提高他们控制假肢和接收感觉反馈的能力,以及先进的模式识别工具,将导致更强大的自适应控制。在这个项目中,我们将进行一系列的测试,这些测试将使用模式识别技术来改善对经桡骨假肢的控制。受试者将被允许将这些假体带回家进行为期一个月的试验,观察并纠正任何遗留的问题。有针对性的肌肉再神经支配(TMR)将在6名受试者中进行。TMR是一种新的外科技术,它将被切除的神经转移到多余的肌肉和皮肤上。它提供了新的肌电信号,可以直观地同时控制截肢者的功能,TMR将提高控制的准确性,可能被强大控制的类别的数量,并可能允许同时独立控制手和手腕。TMR允许对假肢进行更自然的控制,并提供有针对性的感觉反馈,在这种反馈中,受试者通过残肢上的再生神经皮肤感受他们被截肢的手。这两种手术方法将大大改善经桡骨假体的功能。TMR受试者也将进行实地试验。最后,研究了自适应模式识别技术和并行分类器技术。随着用户对分类器的适应,自适应控制可能对临床鲁棒性至关重要。平行控制将允许受试者同时控制手腕和手类,精度很高。这一提议将推动几个科学领域的发展,包括模式识别和神经再生生理学。平行分类器和自适应算法理论将大大发展超越目前的艺术状态,并且在缺乏已知类别的情况下,鲁棒性的概念将在肌电信号的背景下进行探索。这一建议也将促进我们对运动控制的理解,因为我们实施了这些新的控制技术,并为未来的实验提供支持,这将进一步发展我们对运动和感觉神经再生的理解。包括芝加哥康复研究所、新不伦瑞克大学和奥托博克公司在内的优秀团队已经组建起来。我们相信,拟议的研究将提高截肢者的护理标准。它也将成为继续改善假肢功能的重要研究平台。公共卫生相关性。这个项目将应用一种创新的手术技术来治疗经桡骨截肢患者,以改善他们对假肢的控制。它还将开发新技术,以推进具有更多功能的假肢的控制,包括手腕旋转,手腕屈伸和可以移动手指和拇指的手。这些研究将显著改善肘部以下截肢患者的假肢功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Todd Kuiken其他文献

Todd Kuiken的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Todd Kuiken', 18)}}的其他基金

Acquisition of Advanced Polyjet Multimaterial 3D Printer
收购先进的 Polyjet 多材料 3D 打印机
  • 批准号:
    9274524
  • 财政年份:
    2017
  • 资助金额:
    $ 55.83万
  • 项目类别:
Application of Targeted Reinnervation for People with Transradial Amputation
靶向神经再生在经桡动脉截肢患者中的应用
  • 批准号:
    9320557
  • 财政年份:
    2014
  • 资助金额:
    $ 55.83万
  • 项目类别:
Application of Targeted Reinnervation for People with Transradial Amputation
靶向神经再生在经桡动脉截肢患者中的应用
  • 批准号:
    8767628
  • 财政年份:
    2014
  • 资助金额:
    $ 55.83万
  • 项目类别:
Targeted Reinnervation and Pattern-Recognition Control for Transradial Amputees
经桡动脉截肢者的有针对性的神经再生和模式识别控制
  • 批准号:
    8246403
  • 财政年份:
    2008
  • 资助金额:
    $ 55.83万
  • 项目类别:
Targeted Reinnervation and Pattern-Recognition Control for Transradial Amputees
经桡动脉截肢者的有针对性的神经再生和模式识别控制
  • 批准号:
    7599641
  • 财政年份:
    2008
  • 资助金额:
    $ 55.83万
  • 项目类别:
Targeted Reinnervation and Pattern-Recognition Control for Transradial Amputees
经桡动脉截肢者的有针对性的神经再生和模式识别控制
  • 批准号:
    8212465
  • 财政年份:
    2008
  • 资助金额:
    $ 55.83万
  • 项目类别:
Targeted Reinnervation and Pattern-Recognition Control for Transradial Amputees
经桡动脉截肢者的有针对性的神经再生和模式识别控制
  • 批准号:
    8210425
  • 财政年份:
    2008
  • 资助金额:
    $ 55.83万
  • 项目类别:
Targeted Reinnervation and Pattern-Recognition Control for Transradial Amputees
经桡动脉截肢者的有针对性的神经再生和模式识别控制
  • 批准号:
    7793544
  • 财政年份:
    2008
  • 资助金额:
    $ 55.83万
  • 项目类别:
TARGETED REINNERVATION TO IMPROVE MYOELECTRIC PROSTHESIS FUNCTION
有针对性的神经再生以改善肌电假肢功能
  • 批准号:
    7604321
  • 财政年份:
    2006
  • 资助金额:
    $ 55.83万
  • 项目类别:
TARGETED HYPER-REINNERVATION TO IMPROVE MYOELECTRIC PROSTHESIS CONTROL
有针对性的过度神经再支配以改善肌电假肢控制
  • 批准号:
    7376905
  • 财政年份:
    2005
  • 资助金额:
    $ 55.83万
  • 项目类别:

相似海外基金

SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
  • 批准号:
    EP/X031918/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
  • 批准号:
    EP/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
  • 批准号:
    2329940
  • 财政年份:
    2023
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
  • 批准号:
    10075892
  • 财政年份:
    2023
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
  • 批准号:
    538379-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10681326
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10621402
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
  • 批准号:
    573452-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
  • 批准号:
    10032436
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了