Adaptive Methodology for Functional Biomedical Data
功能生物医学数据的自适应方法
基本信息
- 批准号:7467160
- 负责人:
- 金额:$ 25.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlcoholismBayesian MethodBiologicalBiological ProcessBiomedical ResearchBrainCationsClassCodeComplexComputer SimulationDataExperimental DesignsGenomicsGoalsImageIndividualMalignant NeoplasmsMeasurementMethodologyMethodsModelingNeurologicNumbersOpiate AddictionOvarianPrincipal Component AnalysisProcessProteomicsPublic HealthRangeResearchSamplingSeriesSourceSpace PerceptionStatistical MethodsStructureSurfaceTailTestingWorkbasechemotherapymalignant breast neoplasmprogramsresearch studyresponsesoftware developmenttechnological innovation
项目摘要
DESCRIPTION (provided by applicant): An ever-increasing number of biomedical studies yield functional data sampled on a fine grid. These type of data are frequently high dimensional and complex with many irregular features like peaks and change points. There is currently a dearth of existing rigorous statistical methods for analyzing this type of data. The goal of this research program is to develop new Bayesian methodology that provides a unified framework for modeling and performing inference on samples of curves that is flexible enough to apply to a variety of applications, from various experimental designs, and can answer a broad range of research questions. 1. We will develop new methodology within the wavelet-based functional mixed model framework that accommodates outlying curves, a broader class of within- curve covariance structures, and higher dimensional functional data, making it applicable to a broad range of functional data. 2. We will develop methods to classify individuals based on their functional data, e.g. proteomic profiles, in a way that allows us to combine information across functional and scalar factors of multiple sources. We will develop methods to perform Bayesian functional hypothesis testing. 3. We will develop adaptive methods for relating functional predictors to functional responses. 4. We will develop methods for adaptive functional principal components analysis and for principal component-based functional mixed models, which represents a data-driven modeling framework that is extremely flexible in taking into account the complex structure that may be present in the functional data. 5. We will apply the methods to a number of cancer-related studies yielding functional data, including various types of proteomics and genomics data. 6. We will develop efficient, easy-to-use, freely available code to fit the methods described in this proposal. PUBLIC HEALTH RELEVANCE: This research will develop flexible new quantitative methods that can be used to answer a wide range of research questions from complex functional data, which are increasingly encountered in biomedical research as a result of the technological innovations yielding automatic and high dimensional biological measurements. Our approach is to avoid making restrictive simplifying assumptions that do not fit the data, but instead to develop flexible methods that can adapt to their complex features, and thus extract rich information they contain regarding their underlying biological processes.
描述(由申请人提供):越来越多的生物医学研究产生精细网格采样的功能数据。这些类型的数据通常是高维且复杂的,具有许多不规则的特征,如峰值和变化点。目前缺乏现有的严格的统计方法来分析这类数据。本研究计划的目标是开发新的贝叶斯方法,为曲线样本的建模和执行推理提供统一的框架,该框架具有足够的灵活性,可以应用于各种应用,来自各种实验设计,并可以回答广泛的研究问题。1. 我们将在基于小波的功能混合模型框架内开发新的方法,该框架可容纳离群曲线,更广泛的曲线内协方差结构和高维功能数据,使其适用于广泛的功能数据。2. 我们将开发基于个体功能数据(如蛋白质组谱)对其进行分类的方法,这种方法允许我们将多个来源的功能和标量因子的信息结合起来。我们将开发执行贝叶斯功能假设检验的方法。3. 我们将开发自适应方法,将功能预测因子与功能反应联系起来。4. 我们将开发自适应功能主成分分析和基于主成分的功能混合模型的方法,这代表了一个数据驱动的建模框架,在考虑到功能数据中可能存在的复杂结构时非常灵活。5. 我们将把这些方法应用于一些与癌症相关的研究,产生功能数据,包括各种类型的蛋白质组学和基因组学数据。6. 我们将开发高效、易于使用、免费可用的代码,以适应本提案中描述的方法。公共卫生相关性:这项研究将开发灵活的新的定量方法,可用于回答复杂功能数据中广泛的研究问题,这些问题在生物医学研究中越来越多地遇到,因为技术创新产生了自动和高维生物测量。我们的方法是避免做出不适合数据的限制性简化假设,而是开发能够适应其复杂特征的灵活方法,从而提取其包含的关于其潜在生物过程的丰富信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY S MORRIS其他文献
JEFFREY S MORRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY S MORRIS', 18)}}的其他基金
Bayesian methods for complex, high-dimensional functional data in cancer research
癌症研究中复杂、高维功能数据的贝叶斯方法
- 批准号:
10023563 - 财政年份:2015
- 资助金额:
$ 25.4万 - 项目类别:
Bayesian methods for complex, high-dimensional functional data in cancer research
癌症研究中复杂、高维功能数据的贝叶斯方法
- 批准号:
8964150 - 财政年份:2015
- 资助金额:
$ 25.4万 - 项目类别:
Bayesian methods for complex, high-dimensional functional data in cancer research
癌症研究中复杂、高维功能数据的贝叶斯方法
- 批准号:
9143056 - 财政年份:2015
- 资助金额:
$ 25.4万 - 项目类别:
Conference on "Statistical Methods for Complex Biomedical Data"
“复杂生物医学数据的统计方法”会议
- 批准号:
7675117 - 财政年份:2009
- 资助金额:
$ 25.4万 - 项目类别:
Adaptive Methodology for Functional Biomedical Data
功能生物医学数据的自适应方法
- 批准号:
6863709 - 财政年份:2004
- 资助金额:
$ 25.4万 - 项目类别:
Adaptive Methodology for Functional Biomedical Data
功能生物医学数据的自适应方法
- 批准号:
7778328 - 财政年份:2004
- 资助金额:
$ 25.4万 - 项目类别:
Adaptive Methodology for Functional Biomedical Data
功能生物医学数据的自适应方法
- 批准号:
6760523 - 财政年份:2004
- 资助金额:
$ 25.4万 - 项目类别:
相似海外基金
Development and evaluation of a smartphone application to promote the use of alcoholism Self-help groups
开发和评估智能手机应用程序以促进酗酒自助团体的使用
- 批准号:
23K02994 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PRECLINICAL MEDICATIONS SCREENING IN DEPENDENCE, AFFECT AND PAIN MODELS OF ALCOHOLISM
酗酒的依赖性、影响和疼痛模型的临床前药物筛选
- 批准号:
10953233 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Fragment-based Discovery of COMT Inhibitors as a Novel Pharmacotherapy for Alcoholism
基于片段的 COMT 抑制剂的发现作为酒精中毒的新型药物疗法
- 批准号:
10667129 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Voicing the Experience of Adolescents in Francophone Narratives of Family Alcoholism
在家庭酗酒的法语叙述中表达青少年的经历
- 批准号:
2778431 - 财政年份:2022
- 资助金额:
$ 25.4万 - 项目类别:
Studentship
ALCOHOLISM SOLUTIONS: SYNTHESIZING INFORMATION TO SUPPORT TREATMENTS (ASSIST 2.0)
酗酒解决方案:综合信息以支持治疗(ASSIST 2.0)
- 批准号:
10717436 - 财政年份:2022
- 资助金额:
$ 25.4万 - 项目类别:
Alcoholism Solutions: Synthesizing Information to Support Treatments (ASSIST 2.0)
酗酒解决方案:综合信息支持治疗 (ASSIST 2.0)
- 批准号:
10716165 - 财政年份:2022
- 资助金额:
$ 25.4万 - 项目类别:
Miserable One Half and Mad the Other: A Graphic History of Alcoholism at The Salutation Pub
一半悲惨,另一半疯狂:致敬酒吧酗酒的图解史
- 批准号:
2623065 - 财政年份:2021
- 资助金额:
$ 25.4万 - 项目类别:
Studentship
Investigating the longitudinal relationship between alcohol use, neurophysiological functioning, and Alzheimer disease biomarkers in the Collaborative Study on the Genetics of Alcoholism
在酒精中毒遗传学合作研究中调查饮酒、神经生理功能和阿尔茨海默病生物标志物之间的纵向关系
- 批准号:
10660983 - 财政年份:2020
- 资助金额:
$ 25.4万 - 项目类别:
Neuroimaging multiple memory processes, glucocorticoids and alcoholism risk
神经影像学多重记忆过程、糖皮质激素和酗酒风险
- 批准号:
9977375 - 财政年份:2020
- 资助金额:
$ 25.4万 - 项目类别:
Multimodal Imaging of Cognitive Control in Individuals with a Family History of Alcoholism
有酗酒家族史的个体认知控制的多模态成像
- 批准号:
10228610 - 财政年份:2020
- 资助金额:
$ 25.4万 - 项目类别: