Nil algebras, algebraic algebras and algebras with finite Gelfand-Kirillov dimension.

零代数、代数代数和有限 Gelfand-Kirillov 维数的代数。

基本信息

  • 批准号:
    EP/D071674/1
  • 负责人:
  • 金额:
    $ 50.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

It is proposed to undertake a study of fundamental structural properties of noncommutative rings and algebras involving the notions of nil algebras, algebraic algebras and growth of algebras (Gelfand-Kirillov dimension).There are very difficult open problems in each of these areas, and also there are many interconnections between the three main themes. The project will investigate several of these open problems.The most famous problem in the area of nil algebras is the Koethe Conjecture, first posed in 1930, which asserts that if a ring has no nonzero nil ideals then it has no nonzero nil one-sided ideals. This is a fundamental question about the general structure of rings, and a thorough understanding of nil and nilpotent rings is necessary for any serious attempt to understand general rings. Related problems concerning nil rings will be one of the main themes of this project. The Fellow has already made fundamental contributions to this area, including the construction of a simple nil algebra over any countable field.The most famous problem about algebraic algebras is the Kurosh Problem which asks whether the knowledge that a finitely generated algebra is algebraic over a base field is sufficient to ensure that the algebra is finite dimensional. This is untrue in general, as demonstated by Golod and Shafarevich in 1964. However, many partial positive results are known, and a second main theme of the project is to clarify the borderline between positive and negative solutions of the Kurosh Problem. There are close connections between this theme and the previous theme: for example, the Golod-Shafarevich algebras are infinite dimensional nil algebras that are not nilpotent.The third main theme is the growth of algebras, and, in particular, a study of algebras with restricted growth. The Fellow has already made a fundamental contribution to this area in proving the Artin-Stafford Gap Theorem, which asserts that there are no graded domains with growth strictly between 2 and 3.A substantial part of the third theme will be to investigate the problems arising in the first two themes under restrictions on the growth of the algebras. For example, the Golod-Shafarevich algebra has exponential growth, but the Fellow has recently produced a examples with (relatively) small growth. The exact limits on the growth conditions in many of the open problems will be investigated in the project.
本文拟对非交换环和代数的基本结构性质进行研究,涉及零代数、代数代数和代数生长(Gelfand-Kirillov维数)的概念。这两个领域都有非常困难的开放性问题,而且这三个主题之间也有许多相互联系。该项目将调查其中几个悬而未决的问题。零代数领域中最著名的问题是1930年首次提出的Koethe猜想,该猜想断言,如果一个环没有非零零零理想,那么它就没有非零零零单侧理想。这是一个关于环一般结构的基本问题,对于任何认真理解环的尝试来说,彻底理解零环和幂零环是必要的。有关零环的相关问题将是本项目的主题之一。该研究员已经在这一领域做出了根本性的贡献,包括在任何可数域上构造一个简单的零代数。关于代数最著名的问题是Kurosh问题,这个问题是关于一个有限生成的代数是基域上的代数的知识是否足以保证该代数是有限维的。这通常是不正确的,正如Golod和Shafarevich在1964年所证明的那样。然而,许多部分的积极结果是已知的,该项目的第二个主题是澄清黑什问题的积极和消极解决方案之间的界限。这个主题和之前的主题有密切的联系:例如,gold - shafarevich代数是无限维的零代数,它们不是幂零的。第三个主题是代数的生长,特别是对限制生长代数的研究。这位研究员已经在这个领域做出了根本性的贡献,他证明了Artin-Stafford Gap定理,该定理断言没有严格在2和3之间增长的分级域。第三主题的实质性部分将是在代数增长的限制下研究前两个主题中出现的问题。例如,gold - shafarevich代数具有指数增长,但研究员最近给出了一个(相对)小增长的例子。该项目将研究许多开放问题中生长条件的确切限制。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Trends in Noncommutative Algebra
非交换代数的新趋势
  • DOI:
    10.1090/conm/562/11131
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chlouveraki M
  • 通讯作者:
    Chlouveraki M
Jacobson radical non-nil algebras of Gel'fand-Kirillov dimension 2
Gelfand-Kirillov 维 2 的 Jacobson 激进非零代数
  • DOI:
    10.1007/s11856-012-0073-5
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Smoktunowicz A
  • 通讯作者:
    Smoktunowicz A
Primitive algebraic algebras of polynomially bounded growth
多项式有界增长的本原代数代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Agata Smoktunowicz (Author)
  • 通讯作者:
    Agata Smoktunowicz (Author)
Rings of differential operators on curves
曲线上的微分算子环
Nil algebras with restricted growth
限制增长的零代数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agata Smoktunowicz其他文献

On Primitive Ideals in Polynomial Rings over Nil Rings
  • DOI:
    10.1007/s10468-004-6118-7
  • 发表时间:
    2005-03-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Agata Smoktunowicz
  • 通讯作者:
    Agata Smoktunowicz
A polynomial ring that is Jacobson radical and not nil
  • DOI:
    10.1007/bf02772627
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Agata Smoktunowicz;E. R. Puczyłowski
  • 通讯作者:
    E. R. Puczyłowski
Some results in noncommutative ring theory
非交换环理论的一些结果
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Agata Smoktunowicz
  • 通讯作者:
    Agata Smoktunowicz
Chains of Prime Ideals and Primitivity of $\mathbb {Z}$ -Graded Algebras
  • DOI:
    10.1007/s10468-015-9516-0
  • 发表时间:
    2015-01-25
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Be’eri Greenfeld;André Leroy;Agata Smoktunowicz;Michał Ziembowski
  • 通讯作者:
    Michał Ziembowski
Numerical stability of the symplectic $$LL^T$$ factorization
  • DOI:
    10.1007/s11075-025-02075-z
  • 发表时间:
    2025-04-22
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Maksymilian Bujok;Miroslav Rozložník;Agata Smoktunowicz;Alicja Smoktunowicz
  • 通讯作者:
    Alicja Smoktunowicz

Agata Smoktunowicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic groups and Lie algebras
代数群和李代数
  • 批准号:
    2883177
  • 财政年份:
    2023
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Studentship
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
  • 批准号:
    2223126
  • 财政年份:
    2022
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Continuing Grant
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
  • 批准号:
    2101761
  • 财政年份:
    2021
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Standard Grant
Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
  • 批准号:
    21K13781
  • 财政年份:
    2021
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Algebraic groups and Lie algebras
代数群和李代数
  • 批准号:
    2436984
  • 财政年份:
    2020
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Studentship
A comprehensive study of elliptic algebras and new development of noncommutative algebraic geometry
椭圆代数综合研究及非交换代数几何新进展
  • 批准号:
    20K14288
  • 财政年份:
    2020
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hopf algebras, operator theory, and algebraic combinatorics
Hopf 代数、算子理论和代数组合
  • 批准号:
    RGPIN-2014-06515
  • 财政年份:
    2018
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Discovery Grants Program - Individual
Homomorphisms of Beurling algebras -- the algebraic case
Beurling 代数的同态——代数案例
  • 批准号:
    524937-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 50.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Koszul AS-regular algebras in terms of Non-commutative algebraic geometry and Representation theory
Koszul AS-非交换代数几何和表示论中的正则代数
  • 批准号:
    18K13397
  • 财政年份:
    2018
  • 资助金额:
    $ 50.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Homomorphisms of Beurling algebras -- the algebraic case
Beurling 代数的同态——代数案例
  • 批准号:
    524938-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 50.41万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了