Bioconvection: hydrogen production and high concentrations in suspensions of swimming micro-organisms

生物对流:游动微生物悬浮液中氢气的产生和高浓度

基本信息

  • 批准号:
    EP/D073308/1
  • 负责人:
  • 金额:
    $ 84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Single celled green algae can be found growing and swimming in most naturally occurring bodies of water on Earth. They are small - 10,000 could fit on a pinhead - and they tend to swim in particular directions, such as towards light or away from gravity, to improve their chances of survival. Indeed, a red form is responsible for the pink sheen that you can sometimes see on melting snow. When they accumulate in upper regions of the fluid, the mostly high density of the cell-rich fluid above less dense fluid can lead to overturning and amazingly intricate self-perpetuating patterns in just tens of seconds. Physicists and mathematicians, including myself, have been studying these so-called bioconvection patterns in dilute suspensions for some years and have come up with ways to predict some aspects of the patterns that occur. One minor aspect of this proposal is to study other statistical properties of the patterns with geometric image processing techniques that I hope to develop using curvature. The system is a great example of how simple rules for individuals can scale up to produce structure many times the individuals' size, and the same methods can be used with other organisms such as bacteria. It turns out that green algae have other tricks up their sleeves. When they are starved of sulphur, a new circuit internal to each cell kicks in to convert spare electrons from photosynthesis together with protons to hydrogen. This would be fantastic news, for it might ultimately provide a pollution-free and competitive source of hydrogen fuel, were it not for the fact that this circuit is extremely sensitive to oxygen, which is another product of photosynthesis. In order to produce hydrogen you also need to starve the culture of oxygen. This works well for a while, as all the oxygen released from photosynthesis gets used up by the respiration circuitry. As well as producing hydrogen, the cells change shape and structure, and thus their behavioural response to the environment, which means that the algae produce different types of large-scale pattern and this in turn effects the amount of photosynthesis and hydrogen that each cell produces. However, after some hours the cells begin to starve and they shut down. Sulphur and oxygen are required to bring the algae back to their original condition. Actually there are fine balances between starving the cells, the patterns produced and hydrogen production. It's reasonable to predict that a better understanding of the system can produce better yields of hydrogen. To understand the whole process we must make mathematical models of each aspect and to glue them together so that they make sense. My recent research papers have concentrated on the patterns produced by dilute suspensions of cells, but I now have a number of strong ideas on how to deal with the range of behaviour from individual cell dynamics to large scale patterns in dilute suspensions, through simple cell-to-cell interactions to very concentrated cultures. In intend to use techniques from probability and the study of fluids and porous structures. I also have set up a laboratory where I can explore mechanisms and test the mathematical theories to make sure that they are fully consistent with reality. The hope is that one day we may have cars fuelled by hydrogen produced in an environmentally friendly way using green algae, but the methods and results produced from this research will undoubtedly have application in many other systems from pharmaceuticals to fisheries.
单细胞绿色藻类可以在地球上大多数自然存在的水体中生长和游泳。它们很小--一个针头上可以装下10,000个--而且它们倾向于朝特定的方向游泳,比如朝着光线或远离重力,以提高生存机会。事实上,一个红色的形式是负责粉红色的光泽,你有时可以看到融化的雪。当它们聚集在流体的上部区域时,密度较低的流体上方的大多数高密度的富含细胞的流体可以在短短几十秒内导致颠覆和令人惊讶的复杂的自我延续模式。物理学家和数学家,包括我自己,多年来一直在研究稀释悬浮液中的这些所谓的生物对流模式,并提出了预测模式某些方面的方法。这个建议的一个次要方面是研究其他统计特性的模式与几何图像处理技术,我希望开发使用曲率。该系统是一个很好的例子,说明了个体的简单规则如何扩大到产生许多倍于个体大小的结构,同样的方法也可以用于其他生物体,如细菌。事实证明,绿色海藻还有其他的锦囊妙计。当它们缺乏硫时,每个细胞内部的一个新电路就会启动,将光合作用产生的多余电子与质子一起转化为氢。这将是一个极好的消息,因为它可能最终提供一种无污染和有竞争力的氢燃料来源,如果不是因为这个电路对氧气非常敏感,这是光合作用的另一种产物。为了生产氢气,你还需要使培养物缺氧。这在一段时间内效果很好,因为光合作用释放的所有氧气都被呼吸回路消耗掉了。除了产生氢,细胞改变形状和结构,从而改变它们对环境的行为反应,这意味着藻类产生不同类型的大规模模式,这反过来影响每个细胞产生的光合作用和氢的量。然而,几个小时后,细胞开始饥饿,它们关闭。需要硫和氧才能使藻类恢复到原来的状态。实际上,在使细胞饥饿、产生的模式和氢气的产生之间有很好的平衡。可以合理地预测,更好地理解该系统可以产生更好的氢气产量。为了理解整个过程,我们必须为每个方面建立数学模型,并将它们粘合在一起,使它们有意义。我最近的研究论文集中在稀悬浮细胞产生的模式,但我现在有一些强有力的想法,如何处理从单个细胞动力学到稀悬浮液中的大规模模式,通过简单的细胞与细胞的相互作用到非常集中的培养物的行为范围。在打算使用的技术从概率和流体和多孔结构的研究。我还建立了一个实验室,在那里我可以探索机制和测试数学理论,以确保它们与现实完全一致。希望有一天我们可以用绿色藻类以环境友好的方式生产氢气作为汽车的燃料,但这项研究产生的方法和结果无疑将应用于从制药到渔业的许多其他系统。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cluster synchronisation: A mechanism for plankton patchiness and a simulation pitfall
集群同步:浮游生物斑块的机制和模拟陷阱
  • DOI:
    10.1016/j.ocemod.2009.04.006
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Guirey E
  • 通讯作者:
    Guirey E
Sheared bioconvection in a horizontal tube.
水平管中的剪切生物对流。
  • DOI:
    10.1088/1478-3975/7/4/046001
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Croze OA
  • 通讯作者:
    Croze OA
On the bifurcation of species.
论物种的分化。
  • DOI:
    10.1063/1.3009196
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bees MA
  • 通讯作者:
    Bees MA
Biased swimming cells do not disperse in pipes as tracers: A population model based on microscale behaviour
  • DOI:
    10.1063/1.4772189
  • 发表时间:
    2012-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    R. Bearon;M. Bees;O. A. Croze
  • 通讯作者:
    R. Bearon;M. Bees;O. A. Croze
Mathematics for streamlined biofuel production from unicellular algae
  • DOI:
    10.4155/bfs.13.66
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bees;O. A. Croze
  • 通讯作者:
    M. Bees;O. A. Croze
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Bees其他文献

Martin Bees的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Bees', 18)}}的其他基金

Real-time visualisation and modelling of biofilm inhibition by lactam
内酰胺生物膜抑制的实时可视化和建模
  • 批准号:
    BB/N024095/1
  • 财政年份:
    2016
  • 资助金额:
    $ 84万
  • 项目类别:
    Research Grant

相似国自然基金

气体信号分子硫化氢对颈动脉窦压力反射感受器的调节作用及机制
  • 批准号:
    81100181
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
气体信号分子硫化氢对腰椎间盘髓核细胞凋亡影响的实验研究
  • 批准号:
    81071504
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
硫化氢通过核转录因子-kB信号途径调节高血压大鼠血管平滑肌细胞增殖的研究
  • 批准号:
    81070212
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
水合物储存氢气的应用基础研究
  • 批准号:
    50806050
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
内源性硫化氢调控高血压血管基质重塑的研究
  • 批准号:
    30801251
  • 批准年份:
    2008
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Revolutionising Electrolysers for Low-Cost Green Hydrogen Production
革新电解槽以实现低成本绿色制氢
  • 批准号:
    IM240100216
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Mid-Career Industry Fellowships
Hydrogen Production from Waste - HyWay
废物制氢 - HyWay
  • 批准号:
    EP/Y036751/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Research Grant
HyWay: Hydrogen Production from Waste
HyWay:利用废物制氢
  • 批准号:
    EP/Y036921/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Research Grant
Hydrogen production from waste - HyWay
利用废物制氢 - HyWay
  • 批准号:
    EP/Z000289/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Research Grant
Solar-powered methanol conversion for on-demand hydrogen production
太阳能甲醇转化用于按需制氢
  • 批准号:
    DE240100810
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Discovery Early Career Researcher Award
A Solar Photoelectrochemical Cell for Unbiased Hydrogen Production
用于无偏产氢的太阳能光电化学电池
  • 批准号:
    DE240100660
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Discovery Early Career Researcher Award
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
  • 批准号:
    2904783
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Studentship
CAREER: Unraveling Oxygen Electrode Delamination Mechanisms in Reversible Solid Oxide Cells for Robust Hydrogen Production
职业:揭示可逆固体氧化物电池中的氧电极分层机制,以实现稳健的氢气生产
  • 批准号:
    2336465
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Standard Grant
Hydrogen Production from Waste
废物制氢
  • 批准号:
    EP/Y036859/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    Research Grant
Anionic Exchange Membrane water ELectrolysis for highLY efficIenTcy sustAinable, and clean Hydrogen production (AEMELIA)
阴离子交换膜水电解实现高效、可持续、清洁的氢气生产 (AEMELIA)
  • 批准号:
    10109547
  • 财政年份:
    2024
  • 资助金额:
    $ 84万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了