Cell Modification in 3D: a new Paradigm in the Creation of Living Cell-Biomaterial Composites
3D 细胞修饰:创建活细胞-生物材料复合材料的新范式
基本信息
- 批准号:EP/D075327/1
- 负责人:
- 金额:$ 17.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our aims are to develop new, improved materials and methods which will allow stem cells (mesenchymal; MSCs) to be manipulated to form bone tissue. We will do this using tiny (<100 nm; 1/1000 diameter human hair) calcium phosphate (hydroxyapatite; HAP) particles as vectors to carry specific biological molecules to the cells. To maximize the delivery of these chemical and genetic signals, the whole cell surface of each individual cell will be covered with the vectors (3D coating). Specifically, this will allow us to produce and grow self supporting, living bone tissue, either inside the body at the site of damage, or outside in culture dishes ready for implant. More generally, the improved efficiency and cost effectiveness of this approach will also enhance studies in the generation of other tissue types from MSCs (e.g. nerve and muscle) and in modifying other types of stem cell.Why mesenchymal stem cells?Stem cells have huge potential as therapeutic agents. Embryonic stem cells (ESC) have the potential to form all the major types of cell in the body, and are relatively easy to grow in culture. However, there are ethical and compatibility concerns with there use. Adult stem cells (ASC) can be harvested from specific tissue types (blood, nerves, skin), but the populations need to be expanded to get sufficient material for therapeutic use. In this regard, bone marrow mesenchymal stem cells (MSC) offer great hope for tissue engineering as methods for isolation and rapid cultivation are well established. They are natural precursors to bone, cartilage, fat and fibrous connective tissue formation. Thus they are already intensively studied as components of systems for replacing damaged bone tissues (e.g. restorative surgery). In addition the same person can be donor and recipient, thus alleviating the problems associated with ESCs.Why small hydroxyapatite particles?Hydroxyapatite is the chemical form of calcium phosphate found in bone, so it is compatible with the cells. The crystals of HAP in bone are also of a similar size (<100 nm). In addition, because the crystals are so small as well as coating the cell, some will be transported inside the cell. Thus the particles can be used to deliver information to the cell surface and interior.Why chemical and genetic signals?The key to using stem cells to regenerate tissue is the ability to persuade them to form the required type. There are two ways to manipulate these cells towards bone formation / direct genetic modification of the internal cell nucleus, or the use of indirect external stimuli such as chemicals secreted by other cells or present in the local cell environment, and physical contact with other cells.Why 3D coating?Bone-like cell behaviour is induced indirectly by adding expensive chemicals to the culture medium or adsorbing them onto the substrates. Direct genetic modification requires DNA to be delivered to the cell nucleus, typically by attachment to small carrier particles. For example, standard methods for gene delivery using HAP involve mixing the precursor chemicals together, then allowing the crystals that form to randomly settle on the cells like a snowstorm. There are two main factors which contribute to the inefficiency of both these current approaches; (a) the cells are adhered to a substrate, so not all the cell surface is available, and (b) the cells themselves are not targeted, so the additives are used at higher concentration than necessary. Both these problems should be alleviated by our proposed method.
我们的目标是开发新的,改进的材料和方法,使干细胞(间充质; MSC)被操纵形成骨组织。我们将使用微小的(<100 nm; 1/1000直径的人类头发)磷酸钙(羟基磷灰石; HAP)颗粒作为载体,将特定的生物分子携带到细胞中。为了最大限度地传递这些化学和遗传信号,每个细胞的整个细胞表面都将被载体覆盖(3D涂层)。具体来说,这将使我们能够生产和生长自我支持的活骨组织,无论是在体内的损伤部位,还是在体外的培养皿中准备植入。更一般地说,这种方法的效率和成本效益的提高也将促进从MSC产生其他组织类型(例如神经和肌肉)和修饰其他类型的干细胞的研究。为什么是间充质干细胞?干细胞作为治疗剂具有巨大的潜力。胚胎干细胞(ESC)具有形成体内所有主要类型细胞的潜力,并且相对容易在培养中生长。然而,使用时存在伦理和兼容性问题。成体干细胞(ASC)可以从特定的组织类型(血液,神经,皮肤)中收获,但需要扩大群体以获得足够的材料用于治疗。在这方面,骨髓间充质干细胞(MSC)提供了很大的希望,为组织工程的分离和快速培养的方法已经建立。它们是骨、软骨、脂肪和纤维结缔组织形成的天然前体。因此,它们已经作为用于替换受损骨组织的系统(例如,修复手术)的组件被深入研究。此外,同一个人可以同时作为供体和受体,从而减轻了与ESCs相关的问题。为什么要使用小的羟基磷灰石颗粒?羟基磷灰石是在骨骼中发现的磷酸钙的化学形式,因此它与细胞相容。骨中的HAP晶体也具有相似的尺寸(<100 nm)。此外,由于晶体是如此之小,以及涂层细胞,一些将被运送到细胞内。因此,粒子可以用来传递信息到细胞表面和内部。为什么是化学和遗传信号?使用干细胞再生组织的关键是说服它们形成所需类型的能力。有两种方法可以操纵这些细胞朝向骨形成/直接对内部细胞核进行基因修饰,或者使用间接的外部刺激,例如其他细胞分泌的化学物质或存在于局部细胞环境中的化学物质,以及与其他细胞的物理接触。通过向培养基中添加昂贵的化学品或将其吸附到基质上,间接诱导骨样细胞行为。直接遗传修饰需要将DNA递送到细胞核,通常是通过附着到小载体颗粒上。例如,使用HAP进行基因递送的标准方法包括将前体化学物质混合在一起,然后允许形成的晶体像暴风雪一样随机地沉积在细胞上。有两个主要因素导致这两种现有方法的效率低下;(a)细胞粘附到基底上,因此并非所有细胞表面都是可用的,以及(B)细胞本身不是靶向的,因此添加剂以高于所需的浓度使用。这两个问题都应该通过我们提出的方法得到缓解。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Davis其他文献
Ultraviolet B-induced activation of melanocytes is mediated through interferon-gamma secreted by macrophages
- DOI:
10.1016/j.cyto.2009.07.151 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
M. Raza Zaidi;Edward De Fabo;Sean Davis;Cari Graff-Cherry;Teresa Hawley;Lionel Feigenbaum;Elaine Fuchs;Thomas Hornyak;Heinz Arnheiter;Giorgio Trinchieri;Frances Noonan;Paul Meltzer;Glenn Merlino - 通讯作者:
Glenn Merlino
AnVILWorkflow: A runnable workflow package for Cloud-implemented bioinformatics analysis pipelines
AnVILWorkflow:用于云实施的生物信息学分析管道的可运行工作流程包
- DOI:
10.21203/rs.3.rs-4370115/v1 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sehyun Oh;Kai Gravel;Marcel Ramos;Sean Davis;Vince Carey;Martin Morgan;Levi Waldron - 通讯作者:
Levi Waldron
Overview of the SPARC ReanalysisIntercomparison Project (S-RIP) during 2013-2020
2013-2020 年 SPARC 再分析比对项目 (S-RIP) 概述
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Masatomo Fujiwara;Gloria L. Manney;Lesley J. Gray,Jonathon S. Wright;James Anstey;Thomas Birner;Sean Davis;Edwin P. Gerber;V.Lynn Harvey;Michaela I. Hegglin;Cameron R. Homeyer;John A. Knox;Kirstin Krger,Alyn Lambert;Craig S. Long;Patrick Mart - 通讯作者:
Patrick Mart
Analysis of bipolar disorder using affected relatives
使用受影响的亲属对双相情感障碍进行分析
- DOI:
10.1002/(sici)1098-2272(1997)14:6<605::aid-gepi9>3.0.co;2-y - 发表时间:
1997 - 期刊:
- 影响因子:2.1
- 作者:
Sean Davis;E. Sobel;Marin Marinov;D. Weeks - 通讯作者:
D. Weeks
Bioactive and biocompatible nacre-like apatite-wollastonite/polymer composites with enhanced toughness and load-bearing capability
具有增强的韧性和承载能力的生物活性且生物相容的类珍珠质磷灰石 - 硅灰石/聚合物复合材料
- DOI:
10.1016/j.jeurceramsoc.2025.117397 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:6.200
- 作者:
Parinaz Tabrizian;Farnaz Ghorbani;Huijun Sun;Aqsa Qambrani;James P.K. Armstrong;Tan Sui;Sean Davis;Bo Su - 通讯作者:
Bo Su
Sean Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Davis', 18)}}的其他基金
Case for a Field Emission Gun Analytical Transmission Electron Microscope
场发射枪分析透射电子显微镜箱
- 批准号:
EP/L022532/1 - 财政年份:2014
- 资助金额:
$ 17.62万 - 项目类别:
Research Grant
相似海外基金
The Effect and Molecular Mechanisms of HIV-induced Host RNA Modification
HIV诱导宿主RNA修饰的作用及分子机制
- 批准号:
24K18453 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
- 批准号:
2330970 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Standard Grant
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
- 批准号:
23K28429 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
GLYCOprotein N-glycosylation from non-life to eukaryotes: a Doctoral Network to expand the knowledge on a ubiquitous posttranslational modification
从非生命到真核生物的糖蛋白 N-糖基化:扩展普遍存在的翻译后修饰知识的博士网络
- 批准号:
EP/Y032527/1 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Research Grant
Investigations into aryl nitriles for protein modification via an untapped mode of reactivity
通过未开发的反应模式研究芳基腈用于蛋白质修饰
- 批准号:
EP/X037819/1 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Research Grant
Coupling transmission of heat-gas-moisture in accelerating carbonation for modification of recycled aggregates and CO2 sequestration
热-气-湿耦合传输加速再生骨料碳化改性和 CO2 封存
- 批准号:
24K17330 - 财政年份:2024
- 资助金额:
$ 17.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Chimeric molecules for precision protein modification
用于精确蛋白质修饰的嵌合分子
- 批准号:
DE230101236 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Discovery Early Career Researcher Award
Surface modification of ceramic phosphor using hydrophobic interaction and effect on emission efficiency
利用疏水相互作用对陶瓷荧光粉进行表面改性及其对发射效率的影响
- 批准号:
23K04406 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Development of Surface Modification Process for Semitransparent Photoelectrodes toward Durable Tandem Water Splitting Cell
半透明光电极表面改性工艺的发展以实现耐用的串联水分解电池
- 批准号:
23K04917 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of innovative wind resistant design method for high-rise buildings with corner modification using online aerodynamic database
利用在线空气动力数据库开发转角改造高层建筑创新抗风设计方法
- 批准号:
23H01496 - 财政年份:2023
- 资助金额:
$ 17.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)