Genetically encoded sensors shed light on zinc homeostasis

基因编码传感器揭示了锌稳态

基本信息

  • 批准号:
    7435271
  • 负责人:
  • 金额:
    $ 28.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-01 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Transition metal ions are critical to life as we know it. 30% of all proteins contain a metal ion cofactor and these proteins play essential roles in fundamental processes such as respiration, oxygen transport and storage, cell division and migration, and gene transcription. Paradoxically, these essential metals are also toxic and therefore cells must tightly regulate metal accumulation, transport, distribution and export. Not surprisingly, metal imbalance has profound implications at both the cellular and organismal level and is correlated with a host of pathological conditions such as Alzheimer's disease, neurodegeneration, diabetes, prostate cancer, and Wilson's and Menkes disease. The long term goals of our research are to identify the mechanisms by which cells balance metal ions, to define conditions under which cells use metals as signaling agents, and to elucidate how metal imbalance leads to disease and degeneration. The current proposal focuses on Zn2+ as there is emerging evidence that transient Zn2+ signals can be generated within the cell, representing an exciting new paradigm in how metal ions influence cellular function. Moreover, Zn2+ is unique among transition metal ions as it is concentrated into secretory vesicles in a sub-set of cells where it plays a specialized, but poorly defined role in cellular function. Disruption of Zn2+ in these cells has devastating consequences, highlighting the need for a deeper understanding of the physiological role of Zn2+ as well as the means by which Zn2+ disrupts cellular processes. Our current understanding of cellular Zn2+ homeostasis is limited by the lack of appropriate tools to interrogate Zn2+ distribution with high spatial resolution. We propose to address this need by developing a comprehensive family of fluorescent Zn2+ sensors that can be genetically encoded, i.e. explicitly targeted to distinct organelles and sub-domains of the cell. These sensors will be localized to the ER, Golgi, and mitochondria to image Zn2+ distribution and translocation in living cells. We hypothesize that cells contain labile pools of zinc that can be mobilized in response to cellular signals and stresses, and that cellular organelles play a critical role in modulating these zinc signals. Our proposed work has 3 specific aims: (1) Development of genetically encodable fluorescent zinc sensors by systematic investigation of naturally occurring Zn2+ binding domains and microfluidic screening of sensor libraries; (2) Biophysical characterization and in situ validation of sensors; and (3) Identify sources of and sinks for Zn2+ upon mobilization by cellular signals such as nitric oxide, and cellular stresses such as redox destabilization. PUBLIC HEALTH RELEVANCE: Quantitative imaging of metal ion localization and translocation in living cells would transform our current knowledge of metal homeostasis, providing insight into the fundamental workings of the cell, and shedding light on cellular processes that are perturbed when metal regulation goes awry. Quantitative imaging of transition metal ions in living cells will transform our understanding of how cells regulate metal ion availability, and conversely how metal ions influence cellular function. Because metal imbalance and dysregulation have been correlated with a wide variety of diseases, such as Alzheimers, cancer, and diabetes, metal homeostasis has profound implications for human health. Understanding the detailed mechanisms by which organisms control metal ions will highlight potential avenues for intervention, and could ultimately lead to targeted therapies.
描述(申请人提供):据我们所知,过渡金属离子对生命至关重要。所有蛋白质中有30%含有金属离子辅因子,这些蛋白质在呼吸、氧气运输和储存、细胞分裂和迁移以及基因转录等基本过程中发挥着重要作用。矛盾的是,这些必需金属也是有毒的,因此细胞必须严格控制金属的积累、运输、分配和出口。毫不奇怪,金属失衡在细胞和机体水平上都有深远的影响,并与一系列病理疾病相关,如阿尔茨海默病、神经退行性变、糖尿病、前列腺癌以及威尔逊和门克斯病。我们研究的长期目标是确定细胞平衡金属离子的机制,确定细胞使用金属作为信号媒介的条件,并阐明金属失衡是如何导致疾病和退化的。目前的建议侧重于锌离子,因为有新的证据表明,细胞内可以产生瞬时的锌离子信号,这代表了金属离子如何影响细胞功能的一个令人兴奋的新范式。此外,在过渡金属离子中,锌离子是独一无二的,因为它集中在细胞亚群中的分泌小泡中,在细胞功能中扮演着特殊的、但不明确的角色。锌离子在这些细胞中的干扰具有毁灭性的后果,这突显了需要更深入地了解锌离子的生理作用以及锌离子干扰细胞过程的方式。我们目前对细胞内锌离子动态平衡的理解是有限的,因为缺乏合适的工具来研究高空间分辨率的锌离子分布。为了满足这一需求,我们建议开发一系列全面的锌离子荧光传感器,这些传感器可以通过基因编码,即明确地针对细胞的不同细胞器和亚域。这些传感器将定位于内质网、高尔基体和线粒体,以成像活细胞中锌的分布和转位。我们假设细胞含有不稳定的锌池,可以对细胞信号和压力做出反应,并且细胞细胞器在调节这些锌信号方面起着关键作用。我们的工作有三个具体目标:(1)通过系统研究自然存在的锌离子结合结构域和传感器文库的微流控筛选,开发可遗传编码的荧光锌传感器;(2)传感器的生物物理特性和原位验证;以及(3)通过细胞信号(如一氧化氮)和细胞压力(如氧化还原失稳)来确定锌离子的来源和汇。与公共健康相关:对活细胞中金属离子定位和移位的定量成像将改变我们目前对金属动态平衡的认识,提供对细胞基本工作原理的洞察,并揭示当金属调控出错时被扰乱的细胞过程。活细胞内过渡金属离子的定量成像将改变我们对细胞如何调节金属离子可用性的理解,反过来也将改变金属离子如何影响细胞功能的理解。由于金属失衡和调节失调与多种疾病有关,如阿尔茨海默病、癌症和糖尿病,金属动态平衡对人类健康具有深远的影响。了解生物控制金属离子的详细机制将突出潜在的干预途径,并最终可能导致靶向治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy E Palmer其他文献

Amy E Palmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy E Palmer', 18)}}的其他基金

lluminating the biochemistry of zinc and RNA in live cells
阐明活细胞中锌和 RNA 的生物化学
  • 批准号:
    10808798
  • 财政年份:
    2021
  • 资助金额:
    $ 28.06万
  • 项目类别:
lluminating the biochemistry of zinc and RNA in live cells
阐明活细胞中锌和 RNA 的生物化学
  • 批准号:
    10308669
  • 财政年份:
    2021
  • 资助金额:
    $ 28.06万
  • 项目类别:
lluminating the biochemistry of zinc and RNA in live cells
阐明活细胞中锌和 RNA 的生物化学
  • 批准号:
    10548123
  • 财政年份:
    2021
  • 资助金额:
    $ 28.06万
  • 项目类别:
Regulation of Cell Signaling by Transition Metal Dynamics
过渡金属动力学对细胞信号传导的调节
  • 批准号:
    8755503
  • 财政年份:
    2014
  • 资助金额:
    $ 28.06万
  • 项目类别:
ZINC DISTRIBUTION IN PROSTATE CELL LINES
前列腺细胞系中的锌分布
  • 批准号:
    8170307
  • 财政年份:
    2010
  • 资助金额:
    $ 28.06万
  • 项目类别:
Microfluidics-based Selections for the Optimization of Red Fluorescent Proteins
基于微流体的红色荧光蛋白优化选择
  • 批准号:
    7831342
  • 财政年份:
    2009
  • 资助金额:
    $ 28.06万
  • 项目类别:
Genetically encoded sensors shed light on zinc homeostasis
基因编码传感器揭示了锌稳态
  • 批准号:
    7921863
  • 财政年份:
    2009
  • 资助金额:
    $ 28.06万
  • 项目类别:
MAPPING OF ZINC TO DEFINE THE ROLE OF ZINC IN PROSTATE CANCER
绘制锌图谱以确定锌在前列腺癌中的作用
  • 批准号:
    7954523
  • 财政年份:
    2009
  • 资助金额:
    $ 28.06万
  • 项目类别:
Genetically Encoded Sensors Shed Light on Zinc Homeostasis
基因编码传感器揭示锌稳态
  • 批准号:
    8520823
  • 财政年份:
    2008
  • 资助金额:
    $ 28.06万
  • 项目类别:
Genetically Encoded Sensors Shed Light on Zinc Homeostasis
基因编码传感器揭示锌稳态
  • 批准号:
    8730167
  • 财政年份:
    2008
  • 资助金额:
    $ 28.06万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了