New Theoretical Tools for Biocatalysis
生物催化新理论工具
基本信息
- 批准号:7437120
- 负责人:
- 金额:$ 28.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmberAutomobile DrivingBindingBiologicalBiologyCatalysisCatalytic RNAChargeChemicalsCollaborationsComplexComputer softwareCoupledDataDatabasesDiphosphatesElectrostaticsEnvironmentExhibitsFoundationsHigh Performance ComputingIonsLengthLigaseLigationMechanicsMetal Ion BindingMetalsMethodsModelingMolecularMono-SNatureObject AttachmentPerformanceProcessPublishingRNARangeReactionResearchResolutionRoleScienceSolutionsSolventsStructureSystemTechniquesTestingValidationWorkbasecomputerized toolsdensitydesigndivalent metalhammerhead ribozymeimprovedmodels and simulationmulti-scale modelingnovelprebioticsquantumresearch studyresponsesimulationtooltripolyphosphate
项目摘要
DESCRIPTION (provided by applicant): The broad objective of this research is to establish the foundation for a novel fully quantum mechanical forcefield for simulations of biocatalysis that can be seamlessly integrated with other multi-scale modeling tools and applied to complex biological problems not accessible by other methods. The design of these new computational tools will greatly extend the scope of biocatalysis applications that can be reliably addressed. The impact of this work with be to create a paradigm shift away from conventional mixed quantum mechanical/molecular mechanical (QM/MM) models toward a united fully quantum mechanical approach for molecular simulations of reactive processes in complex environments. The core methods will be based on a new quantum mechanical model for biocatalysis (Biocat-QM) that combines the advantages of existing semiempirical models and extends their capabilities to accurately model reaction barriers, and charge-dependent many-body exchange, polarization and dispersion effects. The Biocat-QM will form the base of a QM/MM model that contains a new form of the QM/MM interaction where non-bonded terms automatically adjust in response to changes in charge state and hybridization. Ultimately, the Biocat-QM will be made into a novel fully quantum mechanical forcefield for simulations of biocatalysis, based on a new linear-scaling quantum method that utilizes a density-overlap repulsion model to circumvent the need for large local basis projections, and that takes advantage of a recently developed adaptive fast-multipole algorithm for efficient calculation of electrostatic interactions for generalized charge distributions. The new tools for simulations of biocatalysis developed in this proposal are designed to surmount the difficulties presented by specific driving applications: the study of the molecular mechanisms of ribozyme catalysis. The methods will be applied to two ribozyme systems that exhibit large-scale conformational changes and divalent metal ion binding coupled with catalysis, and for which very recent structural data has become available through collaborator Prof. William Scott: the full length hammerhead ribozyme and the L1 ligase ribozyme/riboswitch. These systems present unique challenges for which there currently exists no sufficiently reliable biocatalysis simulation model. The computational tools developed in this proposal will be implemented as publicly available modular software, optimized and ported to several high-performance computing platforms, and integrated with the molecular simulation packages AMBER and CHARMM.
描述(由申请人提供):本研究的广泛目标是为一种新型的全量子力学力场建立基础,用于模拟生物催化,可以与其他多尺度建模工具无缝集成,并应用于其他方法无法访问的复杂生物问题。这些新的计算工具的设计将大大扩展可以可靠解决的生物催化应用的范围。这项工作的影响是创造一个范式转变,从传统的混合量子力学/分子力学(QM/MM)模型向一个统一的完全量子力学的方法,在复杂的环境中的反应过程的分子模拟。核心方法将基于一种新的生物催化量子力学模型(Biocat-QM),该模型结合了现有半经验模型的优点,并扩展了其准确模拟反应势垒以及电荷依赖性多体交换,极化和色散效应的能力。Biocat-QM将形成QM/MM模型的基础,该模型包含一种新形式的QM/MM相互作用,其中非键合项自动调整以响应电荷状态和杂交的变化。最终,Biocat-QM将成为一种新型的全量子力学力场,用于模拟生物催化,基于一种新的线性尺度量子方法,该方法利用密度重叠排斥模型来规避对大型局部基础投影的需要,并利用最近开发的自适应快速多极算法来有效计算广义电荷分布的静电相互作用。在这项建议中开发的生物催化模拟的新工具,旨在克服特定的驱动应用程序所提出的困难:核酶催化的分子机制的研究。该方法将被应用到两个核酶系统,表现出大规模的构象变化和二价金属离子结合与催化偶联,并为最近的结构数据已成为通过合作者威廉·斯科特教授:全长锤头状核酶和L1连接酶核酶/核糖开关。这些系统提出了独特的挑战,目前还没有足够可靠的生物催化模拟模型。本提案中开发的计算工具将作为公开可用的模块化软件实施,优化并移植到几个高性能计算平台,并与分子模拟软件包AMBER和CHARMM集成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darrin M York其他文献
Darrin M York的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darrin M York', 18)}}的其他基金
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10439639 - 财政年份:2015
- 资助金额:
$ 28.06万 - 项目类别:
Next-generation alchemical free energy methods and quantum/machine-learning models for drug discovery
用于药物发现的下一代炼金自由能方法和量子/机器学习模型
- 批准号:
10736499 - 财政年份:2015
- 资助金额:
$ 28.06万 - 项目类别:
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10005389 - 财政年份:2015
- 资助金额:
$ 28.06万 - 项目类别:
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10202634 - 财政年份:2015
- 资助金额:
$ 28.06万 - 项目类别:
High End Computing Resource for Large Memory Data-intensive Biomedical Applicatio
适用于大内存数据密集型生物医学应用的高端计算资源
- 批准号:
7839018 - 财政年份:2010
- 资助金额:
$ 28.06万 - 项目类别:
Multi-level Quantum Methods for Phosphate Hydrolysis
磷酸盐水解的多级量子方法
- 批准号:
6892906 - 财政年份:2001
- 资助金额:
$ 28.06万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 28.06万 - 项目类别:
Continuing Grant