Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
基本信息
- 批准号:10202634
- 负责人:
- 金额:$ 32.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAttentionBindingBinding ProteinsBooksCationsChargeChemicalsComplexComputer softwareCoupledDataData SetDevelopmentDrug TargetingElectrostaticsFree EnergyHalogensInflammatoryLaboratoriesLeadLibrariesLigand BindingLigandsMachine LearningMechanicsMetalsMethodsModelingMolecularMolecular ConformationPenetrationPeriodicityPharmaceutical PreparationsPhaseProblem SolvingProteinsResearchSamplingSeriesStructureSurfaceSystemTechnologyTestingThermodynamicsUniversitiesVariantWorkbasedensitydesigndrug discoveryflexibilityinhibitor/antagonistinnovationinsightlead optimizationmacrophagemechanical forcenervous system disordernext generationnovelnovel strategiesphysical modelprogramsquantumresponsesimulationtoolvalidation studies
项目摘要
Next-generation integrated quantum force fields for biomedical applications
PI: Darrin M. York, Rutgers University, Piscataway, NJ 08854-8087 USA.
We have recently developed novel framework for next-generation quantum mechanical force fields (QMFFs)
designed to meet the challenges of biomolecular simulations and drug discovery applications. QMFFs have
tremendous computational advantages relative to their fully QM counterparts, being inherently parallelizable and
linearly scaling, offering tremendous computational speedup, and promising quantitative accuracy potentially
superior to full QM methods. QMFFs accurately model multipolar electrostatics, charge penetration effects, and
non-linear polarization response. QMFFs thus offer a transformative technology for drug discovery applications, in
particular, for advancing the predictive capability of free energy simulations in lead refinement. These are critically
important for the diverse chemical space of drug molecules, including halogen bonding, cation- and metal-ligand
interactions. Further, QMFFs offer a mechanism for modeling covalent inhibitors. Specifically, we propose to: I.
Develop new QMFFs for drug discovery. QMFFs will be developed based on both semiempirical and ab initio
density-functional methods in the following stages: 1) determination of multipolar mapping parameters enhancing
the DFTB electrostatic potential to reach greater accuracy, 2) augmentation of electronic response terms using
chemical potential equalization (CPE) corrections using an orthogonal perturbation-response approach to solve
the under-polarization problem of DFTB methods, 3) parameterization of non-electrostatic non-bonded interac-
tion parameters using realistic potentials that capture many-body exchange and dispersion interactions, and 4)
exploration of statistical potentials, using machine learning approaches applied to quantum data sets, to correct
internal conformational energies and short-range interactions. II. Develop new free energy methods to enable
protein-ligand binding predictions using QMFFs. We will develop a novel integrated free energy pipeline to pre-
dict alchemical binding free energies for ligands and inhibitors. This will include new GPU-accelerated methods
for -space self-adaptive mixture sampling ( -SAMS) and 2D-vFEP analysis, coupled with conformational space
enhanced sampling methods for alchemical steps of the thermodynamic cycle, and advancements in free en-
ergy “book-ending” methods (BBQm) to efficiently connect molecular mechanical force field and QMFF model
representations. III. Test and validate QMFFs and free energy methods, and apply to MIF inhibitor binding. The
methods will be broadly tested against established data sets for solvation free energies, and a drug discovery
data set. More in-depth validation studies will be conducted by examining the relative binding free energies of
inhibitors of the macrophage inhibitory factor (MIF). Finally, exploratory applications will examine mechanisms,
characterize transition states and predict rates for covalent inhibition for a series of MIF inhibitors.
用于生物医学的下一代集成量子力fi场
派:达林·M·约克,罗格斯大学,美国新泽西州皮斯卡塔韦,邮编:08854-8087。
我们最近开发了下一代量子力fi场(Qmff)的新框架。
旨在应对生物分子模拟和药物发现应用的挑战。QMFF有
相对于完全的QM对应物,具有巨大的计算优势,本质上是可并行化的,并且
线性缩放,提供了极大的计算加速,并有可能保证定量精度
优于全质量管理方法。QMFR精确地模拟多极静电、电荷穿透效应和
非线性极化响应。因此,QMFC为药物发现应用提供了一种变革性的技术,在
特别是,用于提高铅元素中自由能模拟的预测能力。这些都是至关重要的
对药物分子的不同化学空间很重要,包括卤素键、阳离子和金属配体
互动。此外,QMFC提供了一种对共价抑制剂进行建模的机制。特别是fiCally,我们建议:I.
开发用于药物发现的新的QMFF。将在半经验和从头算的基础上开发QMFF
密度泛函方法在以下几个阶段的应用:1)多极映射参数增强的确定
DFTB静电势达到更高的精度,2)电子响应项的增强使用
用正交微扰-响应法求解化学势均衡(CPE)校正
DFTB方法的欠极化问题,3)非静电非键合作用的参数化。
使用真实势能捕捉多体交换和色散相互作用的运动参数,以及4)
使用应用于量子数据集的机器学习方法来探索统计势,以校正
内部构象能和短程相互作用。二、开发新的自由能方法,使
基于QMFFS的蛋白质-配体结合预测。我们将开发一种新型的集成自由能源管道,以预
配位体和抑制剂的化学结合自由能。这将包括新的GPU加速方法
FOR-空间自适应混合采样(-SAMS)和2D-vFEP分析,结合构象空间
改进的热力循环化学步骤的取样方法,以及在自由能量方面的进展。
fi分子机械力fi场与QMFF场模型的能量“收尾”方法
申述。测试和验证QMFF和自由能方法,并适用于MIF抑制剂结合。这个
这些方法将根据已建立的溶剂化自由能数据集和一项药物发现进行广泛测试
数据集。将通过检查相对结合自由能进行更深入的验证研究
巨噬细胞抑制因子(MIF)的抑制剂。最后,探索性应用程序将检查机制,
表征一系列MIF抑制剂的过渡态并预测共价抑制率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darrin M York其他文献
Darrin M York的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darrin M York', 18)}}的其他基金
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10439639 - 财政年份:2015
- 资助金额:
$ 32.25万 - 项目类别:
Next-generation alchemical free energy methods and quantum/machine-learning models for drug discovery
用于药物发现的下一代炼金自由能方法和量子/机器学习模型
- 批准号:
10736499 - 财政年份:2015
- 资助金额:
$ 32.25万 - 项目类别:
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10005389 - 财政年份:2015
- 资助金额:
$ 32.25万 - 项目类别:
High End Computing Resource for Large Memory Data-intensive Biomedical Applicatio
适用于大内存数据密集型生物医学应用的高端计算资源
- 批准号:
7839018 - 财政年份:2010
- 资助金额:
$ 32.25万 - 项目类别:
Multi-level Quantum Methods for Phosphate Hydrolysis
磷酸盐水解的多级量子方法
- 批准号:
6892906 - 财政年份:2001
- 资助金额:
$ 32.25万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 32.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 32.25万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 32.25万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 32.25万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 32.25万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 32.25万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 32.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Attention機構に基づく異種集合マッチング方式の分析と新方式の提案
基于注意力机制的异构集合匹配方法分析及新方法的提出
- 批准号:
23K11218 - 财政年份:2023
- 资助金额:
$ 32.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of instruction using focus of attention on performance of chest compressions.
使用注意力集中的教学对胸外按压表现的影响。
- 批准号:
23K09887 - 财政年份:2023
- 资助金额:
$ 32.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assessing the Influence of SDGs Formulation on Managers' Perceptions and CSR Activities: An Attention-based View
评估可持续发展目标制定对管理者认知和企业社会责任活动的影响:基于注意力的观点
- 批准号:
23K01515 - 财政年份:2023
- 资助金额:
$ 32.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




