Next-generation alchemical free energy methods and quantum/machine-learning models for drug discovery

用于药物发现的下一代炼金自由能方法和量子/机器学习模型

基本信息

  • 批准号:
    10736499
  • 负责人:
  • 金额:
    $ 33.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Next-generation alchemical free energy methods and quantum/machine-learning models for drug discovery. PI: Darrin M. York, Rutgers University, Piscataway, NJ 08854-8087 USA. Alchemical free energy (AFE) simulations are indispensable in various aspects of drug discovery by enabling the prediction of ligand binding affinity and selectivity. A critical barrier to progress is the current limitation in pre- cision and accuracy of AFE simulations that restricts their predictive capability. The current proposal addresses these barriers with new AFE methods and models that will be integrated into the GPU-accelerated AMBER soft- ware suite used worldwide (over 30K users) in academia, government labs and industry. Specifically, we propose to: 1. Create advanced technology for robust high-precision AFE simulations; 2. Develop accurate quantum mechanical/deep-learning potential (QDπ) force fields for drug discovery and 3. Validate precision and accu- racy of AFE methods and QDπ model. In Aim 1, we will develop new technologies for robust and reproducible calculation of ligand-protein binding free energies of compound libraries. The methods work together to enable highly precise, converged AFE simulations across thermodynamic graph networks. In Aim 2, we will develop a highly accurate and computationally efficient general quantum deep-potential interaction (QDπ) force field model for drug discovery. The QDπ model will be formulated as a machine learning potential correction (∆-MLP) to the quantum mechanical/molecular mechanical (QM/MM) energy using fast, approximate 3rd-order density-functional tight-binding QM model and well-established AMBER MM force fields and compatible water and ions models. The ∆-MLP will leverage our recently developed range-corrected deep-learning potential (DPRc) for accurate intra- and intermolecular interactions. In Aim 3, we will conduct in depth validation studies of the AFE methods from Aim 1 and QDπ model of Aim 2 on a systematic set of benchmark systems, including macrophage migration inhibitory factor (MIF), JAK2 JH2 domain, SARS-Cov2 Mpro, and sigma 1 and 2 receptors.
新一代炼金术自由能方法和量子/机器学习模型 药物发现。 派:达林·M·约克,罗格斯大学,美国新泽西州皮斯卡塔韦,邮编:08854-8087。 炼金术自由能(AFE)模拟在药物发现的各个方面都是不可或缺的,因为它使 fi刚性和选择性的配基结合预测。取得进展的一个关键障碍是目前在预付款方面的限制 AFE模拟的精确度和准确性限制了它们的预测能力。目前的提案针对的是 这些障碍与新的AFE方法和模型将被集成到GPU加速的琥珀软件中- Ware套件在全球学术界、政府实验室和工业中使用(超过3万用户)。特别是fi,我们建议 目标:1.为稳健的高精度AFE模拟创造先进技术;2.开发精确的量子 机械/深度学习潜力(QDπ)强制fi领域用于药物发现和3.验证精确度和准确性 原子力学法和QDπ模型的合理性。在目标1中,我们将开发新的技术,以实现健壮和可重复使用 化合物文库配体-蛋白质结合自由能的计算。这些方法协同工作以实现 跨热力学图形网络的高精度、聚合AFE模拟。在目标2中,我们将制定一个 高精度和高计算精度的fi广义量子深势相互作用(QDπ)力fi场模型 用于药物研发。QDπ模型将作为机器学习势校正(∆-mlp)来表示 采用快速近似三阶密度泛函的量子力学/分子力学(QM/MM)能量 紧束缚QM模型和公认的琥珀MM力fi场和相容的水和离子模型。这个 ∆-mlp将利用我们最近开发的距离校正深度学习潜力(Dprc)来实现准确的内部学习。 以及分子间相互作用。在目标3中,我们将从以下方面对AFE方法进行深入验证研究 基于包括巨噬细胞迁移在内的系统基准系统的AIM 1和AIM 2的QDπ模型 抑制因子(MIF)、JAK2 JH2结构域、SARS-Cov2 MPRO以及Sigma 1和2受体。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints.
Quantum Suppression of Intramolecular Deuterium Kinetic Isotope Effects in a Pericyclic Hydrogen Transfer Reaction.
周环氢转移反应中分子内氘动力学同位素效应的量子抑制。
  • DOI:
    10.1021/acs.jpca.9b00172
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li,Xiao;York,DarrinM;Meyer,MatthewP
  • 通讯作者:
    Meyer,MatthewP
Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution.
A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
  • DOI:
    10.3390/molecules23102695
  • 发表时间:
    2018-10-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    König G;Pickard FC;Huang J;Thiel W;MacKerell AD;Brooks BR;York DM
  • 通讯作者:
    York DM
Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darrin M York其他文献

Darrin M York的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darrin M York', 18)}}的其他基金

Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
  • 批准号:
    10439639
  • 财政年份:
    2015
  • 资助金额:
    $ 33.69万
  • 项目类别:
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
  • 批准号:
    10005389
  • 财政年份:
    2015
  • 资助金额:
    $ 33.69万
  • 项目类别:
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
  • 批准号:
    10202634
  • 财政年份:
    2015
  • 资助金额:
    $ 33.69万
  • 项目类别:
High End Computing Resource for Large Memory Data-intensive Biomedical Applicatio
适用于大内存数据密集型生物医学应用的高端计算资源
  • 批准号:
    7839018
  • 财政年份:
    2010
  • 资助金额:
    $ 33.69万
  • 项目类别:
New Theoretical Tools for Biocatalysis
生物催化新理论工具
  • 批准号:
    8053793
  • 财政年份:
    2008
  • 资助金额:
    $ 33.69万
  • 项目类别:
New Theoretical Tools for Biocatalysis
生物催化新理论工具
  • 批准号:
    7848164
  • 财政年份:
    2008
  • 资助金额:
    $ 33.69万
  • 项目类别:
New Theoretical Tools for Biocatalysis
生物催化新理论工具
  • 批准号:
    7596276
  • 财政年份:
    2008
  • 资助金额:
    $ 33.69万
  • 项目类别:
New Theoretical Tools for Biocatalysis
生物催化新理论工具
  • 批准号:
    8248951
  • 财政年份:
    2008
  • 资助金额:
    $ 33.69万
  • 项目类别:
New Theoretical Tools for Biocatalysis
生物催化新理论工具
  • 批准号:
    7437120
  • 财政年份:
    2008
  • 资助金额:
    $ 33.69万
  • 项目类别:
Multi-level Quantum Methods for Phosphate Hydrolysis
磷酸盐水解的多级量子方法
  • 批准号:
    6892906
  • 财政年份:
    2001
  • 资助金额:
    $ 33.69万
  • 项目类别:

相似海外基金

Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
  • 批准号:
    2335912
  • 财政年份:
    2024
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
  • 批准号:
    2214418
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
  • 批准号:
    23K02551
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
  • 批准号:
    10746315
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
  • 批准号:
    2332161
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
  • 批准号:
    10813323
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
  • 批准号:
    10087488
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    EU-Funded
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
  • 批准号:
    10102850
  • 财政年份:
    2023
  • 资助金额:
    $ 33.69万
  • 项目类别:
    EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
  • 批准号:
    22K01692
  • 财政年份:
    2022
  • 资助金额:
    $ 33.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
  • 批准号:
    10655632
  • 财政年份:
    2022
  • 资助金额:
    $ 33.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了