Next-generation alchemical free energy methods and quantum/machine-learning models for drug discovery
用于药物发现的下一代炼金自由能方法和量子/机器学习模型
基本信息
- 批准号:10736499
- 负责人:
- 金额:$ 33.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAcademiaAccelerationAddressAffinityBathingBenchmarkingBindingBinding ProteinsBooksChemicalsCollaborationsComplexComputer softwareDataData SetDrug ModelingsElectronicsElectrostaticsFamilyFluorescence PolarizationFree EnergyGoalsGovernmentGraphIndividualIndustryIonsJAK2 geneLagrangian multiplierLibrariesLigand BindingLigandsMachine LearningMapsMeasurementMethodsMigration Inhibitory FactorModelingMolecularMolecular ChaperonesPathway interactionsPhaseProteinsQuantum MechanicsReproducibilityResearch PersonnelRoleSARS-CoV-2 variantSamplingSeriesSolventsStructureSystemTechnologyTestingTherapeuticThermodynamicsTrainingUniversitiesValidationWaterWorkbasecostdeep learningdensitydesigndrug discoverydrug-like compoundexperienceimprovedinhibitorinsightintermolecular interactionmachine learning modelmechanical energymembermolecular mechanicsnew technologynext generationprotonationquantumreceptorresponsescaffoldsimulationtautomertoolvalidation studies
项目摘要
Next-generation alchemical free energy methods and quantum/machine-learning models for
drug discovery.
PI: Darrin M. York, Rutgers University, Piscataway, NJ 08854-8087 USA.
Alchemical free energy (AFE) simulations are indispensable in various aspects of drug discovery by enabling
the prediction of ligand binding affinity and selectivity. A critical barrier to progress is the current limitation in pre-
cision and accuracy of AFE simulations that restricts their predictive capability. The current proposal addresses
these barriers with new AFE methods and models that will be integrated into the GPU-accelerated AMBER soft-
ware suite used worldwide (over 30K users) in academia, government labs and industry. Specifically, we propose
to: 1. Create advanced technology for robust high-precision AFE simulations; 2. Develop accurate quantum
mechanical/deep-learning potential (QDπ) force fields for drug discovery and 3. Validate precision and accu-
racy of AFE methods and QDπ model. In Aim 1, we will develop new technologies for robust and reproducible
calculation of ligand-protein binding free energies of compound libraries. The methods work together to enable
highly precise, converged AFE simulations across thermodynamic graph networks. In Aim 2, we will develop a
highly accurate and computationally efficient general quantum deep-potential interaction (QDπ) force field model
for drug discovery. The QDπ model will be formulated as a machine learning potential correction (∆-MLP) to the
quantum mechanical/molecular mechanical (QM/MM) energy using fast, approximate 3rd-order density-functional
tight-binding QM model and well-established AMBER MM force fields and compatible water and ions models. The
∆-MLP will leverage our recently developed range-corrected deep-learning potential (DPRc) for accurate intra-
and intermolecular interactions. In Aim 3, we will conduct in depth validation studies of the AFE methods from
Aim 1 and QDπ model of Aim 2 on a systematic set of benchmark systems, including macrophage migration
inhibitory factor (MIF), JAK2 JH2 domain, SARS-Cov2 Mpro, and sigma 1 and 2 receptors.
新一代炼金术自由能方法和量子/机器学习模型
药物发现。
派:达林·M·约克,罗格斯大学,美国新泽西州皮斯卡塔韦,邮编:08854-8087。
炼金术自由能(AFE)模拟在药物发现的各个方面都是不可或缺的,因为它使
fi刚性和选择性的配基结合预测。取得进展的一个关键障碍是目前在预付款方面的限制
AFE模拟的精确度和准确性限制了它们的预测能力。目前的提案针对的是
这些障碍与新的AFE方法和模型将被集成到GPU加速的琥珀软件中-
Ware套件在全球学术界、政府实验室和工业中使用(超过3万用户)。特别是fi,我们建议
目标:1.为稳健的高精度AFE模拟创造先进技术;2.开发精确的量子
机械/深度学习潜力(QDπ)强制fi领域用于药物发现和3.验证精确度和准确性
原子力学法和QDπ模型的合理性。在目标1中,我们将开发新的技术,以实现健壮和可重复使用
化合物文库配体-蛋白质结合自由能的计算。这些方法协同工作以实现
跨热力学图形网络的高精度、聚合AFE模拟。在目标2中,我们将制定一个
高精度和高计算精度的fi广义量子深势相互作用(QDπ)力fi场模型
用于药物研发。QDπ模型将作为机器学习势校正(∆-mlp)来表示
采用快速近似三阶密度泛函的量子力学/分子力学(QM/MM)能量
紧束缚QM模型和公认的琥珀MM力fi场和相容的水和离子模型。这个
∆-mlp将利用我们最近开发的距离校正深度学习潜力(Dprc)来实现准确的内部学习。
以及分子间相互作用。在目标3中,我们将从以下方面对AFE方法进行深入验证研究
基于包括巨噬细胞迁移在内的系统基准系统的AIM 1和AIM 2的QDπ模型
抑制因子(MIF)、JAK2 JH2结构域、SARS-Cov2 MPRO以及Sigma 1和2受体。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints.
- DOI:10.1021/acs.jctc.0c01219
- 发表时间:2021-03-09
- 期刊:
- 影响因子:5.5
- 作者:Giese TJ;York DM
- 通讯作者:York DM
Quantum Suppression of Intramolecular Deuterium Kinetic Isotope Effects in a Pericyclic Hydrogen Transfer Reaction.
周环氢转移反应中分子内氘动力学同位素效应的量子抑制。
- DOI:10.1021/acs.jpca.9b00172
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Li,Xiao;York,DarrinM;Meyer,MatthewP
- 通讯作者:Meyer,MatthewP
Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution.
- DOI:10.1021/acs.jctc.1c00201
- 发表时间:2021-11-09
- 期刊:
- 影响因子:5.5
- 作者:Zeng J;Giese TJ;Ekesan Ş;York DM
- 通讯作者:York DM
A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
- DOI:10.3390/molecules23102695
- 发表时间:2018-10-19
- 期刊:
- 影响因子:0
- 作者:König G;Pickard FC;Huang J;Thiel W;MacKerell AD;Brooks BR;York DM
- 通讯作者:York DM
Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration.
- DOI:10.1021/acs.jctc.7b00102
- 发表时间:2017-07-11
- 期刊:
- 影响因子:5.5
- 作者:Lee TS;Hu Y;Sherborne B;Guo Z;York DM
- 通讯作者:York DM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darrin M York其他文献
Darrin M York的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darrin M York', 18)}}的其他基金
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10439639 - 财政年份:2015
- 资助金额:
$ 33.69万 - 项目类别:
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10005389 - 财政年份:2015
- 资助金额:
$ 33.69万 - 项目类别:
Next-generation integrated quantum force fields for biomedical applications
用于生物医学应用的下一代集成量子力场
- 批准号:
10202634 - 财政年份:2015
- 资助金额:
$ 33.69万 - 项目类别:
High End Computing Resource for Large Memory Data-intensive Biomedical Applicatio
适用于大内存数据密集型生物医学应用的高端计算资源
- 批准号:
7839018 - 财政年份:2010
- 资助金额:
$ 33.69万 - 项目类别:
Multi-level Quantum Methods for Phosphate Hydrolysis
磷酸盐水解的多级量子方法
- 批准号:
6892906 - 财政年份:2001
- 资助金额:
$ 33.69万 - 项目类别:
相似海外基金
Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
- 批准号:
2335912 - 财政年份:2024
- 资助金额:
$ 33.69万 - 项目类别:
Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
- 批准号:
2214418 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
- 批准号:
23K02551 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
- 批准号:
10746315 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
- 批准号:
2332161 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
- 批准号:
10813323 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
- 批准号:
10087488 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
EU-Funded
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
- 批准号:
10102850 - 财政年份:2023
- 资助金额:
$ 33.69万 - 项目类别:
EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
- 批准号:
22K01692 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
- 批准号:
10655632 - 财政年份:2022
- 资助金额:
$ 33.69万 - 项目类别: