Computational Prediction of MHC Class II Epitopes
MHC II 类表位的计算预测
基本信息
- 批准号:7187405
- 负责人:
- 金额:$ 6.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-01 至 2008-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAmino AcidsAntigen PresentationAntigensBindingBiological AssayCharacteristicsClassClassificationCommunitiesComplexComputational TechniqueComputer SimulationComputing MethodologiesCoupledDNA Microarray ChipDNA Microarray formatDNA SequenceDataData SetDatabasesDevelopmentDiagnosticDiseaseEpitopesEquipment and supply inventoriesEvaluationGenerationsGenomeGoalsGrantHLA-DR4 AntigenHistocompatibilityHistocompatibility Antigens Class IIImmune TargetingImmune responseIndividualInternetInterventionLaboratoriesLearningLengthLiteratureMajor Histocompatibility ComplexMethodsModelingMolecularMonitorNumbersPathway interactionsPeptide FragmentsPeptidesPerformancePositioning AttributeProcessProteinsRangeReportingResearchScanningSchemeScoreSpecific qualifier valueSubunit VaccinesSystemT-Cell ActivationT-Cell ReceptorT-LymphocyteT-Lymphocyte EpitopesTechniquesTestingTrainingUnited States National Institutes of HealthVaccine DesignVaccinesValidationVariantbasedesignimmune functionimprovedinsightnovelpathogenprogramsprotein aminoacid sequenceprototyperapid techniquetext searchingtool
项目摘要
DESCRIPTION (provided by applicant): The discovery of novel T cell epitopes will greatly facilitate the design and development of improved vaccines by providing critical information needed for the selection of complexes between the major histocompatibility complex (MHC) molecules and antigen peptides that can induce T cell activation. One of the key steps for the epitope identification is the prediction of MHC-peptide binding. Two major classes of MHC molecules are involved in the generation of two types of T cell epitopes. Methods for the prediction of MHC class I epitopes have achieved relatively high accuracy, since the binding motifs of the epitopes are relatively conserved. However, the performance of the prediction methods for MHC class II epitopes are hindered by the variable lengths of the epitopes, the undetermined core region for each individual epitope, and the unknown amino acids as primary anchors. Most of the existing methods attempt to identify binding cores for a set of epitopes through various alignment techniques. Binding motifs or the position specific scoring matrices for prediction can then be assembled from the identified alignment. Motivated by a text mining technique, we have developed a prototype of an supervised learning model for the MHC class II epitope prediction. The idea is to discriminate the core binding nonamers from the non-core nonamers derived from a training set consisting of epitopes and non-epitopes through an iterative process. The characteristics of this model are the simplicity and the capacity of using information both from epitopes and non-epitopes. The preliminary study demonstrated promising performance of this model for HLA-DR4 (Bl*0401) epitopes. In this study, we plan to conduct a thorough evaluation and the optimization of this model. In Aim 1, we will develop the principle for optimization of the model and select the best variant of the method. In Aim 2, we will conduct a thorough evaluation against existing major predictors for various allele specific data. Finally, in Aim 3, we will establish a web server for the prediction of various MHC class II allele-specific epitopes. The system will be freely available to the research community. Our long-term goal is the development of computation methods for prediction of T-cell epitopes. The computational prediction can provide a rapid method for the of pathogen molecules containing immunostimulatory sequences that can serve as targets for immune intervention or diagnostics.
描述(由申请人提供):新T细胞表位的发现将通过提供选择主要组织相容性复合体(MHC)分子和可诱导T细胞活化的抗原肽之间的复合物所需的关键信息,极大地促进改良疫苗的设计和开发。表位鉴定的关键步骤之一是预测MHC-肽结合。两种主要类型的MHC分子参与两种类型的T细胞表位的产生。用于预测MHC I类表位的方法已经实现了相对高的准确性,因为表位的结合基序相对保守。然而,MHC II类表位的预测方法的性能受到表位的可变长度、每个单独表位的不确定的核心区以及作为主要锚的未知氨基酸的阻碍。大多数现有的方法试图通过各种比对技术来鉴定一组表位的结合核心。然后可以从鉴定的比对组装用于预测的结合基序或位置特异性评分矩阵。出于文本挖掘技术,我们已经开发了一个原型的监督学习模型的MHC II类表位预测。该想法是通过迭代过程区分核心结合九聚体与衍生自由表位和非表位组成的训练集的非核心九聚体。该模型的特点是结构简单,能够同时利用表位和非表位信息。初步研究表明,该模型对HLA-DR 4(BI *0401)表位具有良好的性能。在本研究中,我们计划对该模型进行全面的评估和优化。在目标1中,我们将制定模型优化的原则,并选择方法的最佳变体。在目标2中,我们将针对各种等位基因特异性数据的现有主要预测因子进行全面评估。最后,在目标3中,我们将建立一个Web服务器,用于预测各种MHC II类等位基因特异性表位。该系统将免费提供给研究界。我们的长期目标是发展预测T细胞表位的计算方法。计算预测可以提供一种快速的方法,用于检测含有免疫刺激序列的病原体分子,所述免疫刺激序列可以用作免疫干预或诊断的靶标。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Building a meta-predictor for MHC class II-binding peptides.
构建 MHC II 类结合肽的元预测器。
- DOI:10.1007/978-1-60327-118-9_26
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Huang,Lei;Karpenko,Oleksiy;Murugan,Naveen;Dai,Yang
- 通讯作者:Dai,Yang
A meta-predictor for MHC class II binding peptides based on Naïve Bayesian approach.
基于朴素贝叶斯方法的 MHC II 类结合肽的元预测器。
- DOI:10.1109/iembs.2006.259832
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Huang,Lei;Karpenko,Oleksiy;Murugan,Naveen;Dai,Yang
- 通讯作者:Dai,Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YANG DAI其他文献
YANG DAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YANG DAI', 18)}}的其他基金
Integration of electronic medical records and neighborhood contextual indicators into machine learning strategies for identifying pregnant individuals at risk of depression in underserved communities
将电子病历和社区背景指标整合到机器学习策略中,以识别服务欠缺社区中面临抑郁风险的孕妇
- 批准号:
10741143 - 财政年份:2023
- 资助金额:
$ 6.94万 - 项目类别:
Computational Prediction of MHC Class II Epitopes
MHC II 类表位的计算预测
- 批准号:
7080713 - 财政年份:2006
- 资助金额:
$ 6.94万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 6.94万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 6.94万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 6.94万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 6.94万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 6.94万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 6.94万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 6.94万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 6.94万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 6.94万 - 项目类别: